Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 743: 140703, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32758831

RESUMEN

In recent decades, water quality problems that impact human health, especially groundwater pollution, have been intensely studied, and this has contributed to new ideas and policies around the world such as Low Impact Development (LID) and Superfund legislation. The fundamental to many of these problems is pollutant occurrence and migration in saturated porous media, especially in groundwater. Such environments often contain contrasting zones of high and low permeability with significant differences in hydraulic conductivity (~10-4 and 10-8 m/s, respectively). High-permeability zones (HPZs) represent the primary pathways for pollutant transport in groundwater, while low-permeability zones (LPZs) are often diffusion dominated and serve as both sinks and sources (i.e., via back-diffusion) of pollutants over many decades. In this review, concepts and mechanisms of solute source depletion, contaminant accumulation, and back-diffusion in high- and low-permeability systems are presented, and new insights gained from both experimental and numerical studies are analyzed and summarized. We find that effluent monitoring and novel image analysis techniques have been adroitly used to investigate temporal and spatial evolutions of contaminant concentration; simultaneously, mathematical models are constantly upscaled to verify, optimize and extend the experimental data. However, the spatial concentration data during back-diffusion lacks diversity due to the limitations of pollutant species in studies, the microscopic mechanisms controlling pollutant transformation are poorly understood, and the impacts of these reactions on contaminant back-diffusion are rarely considered. Hence, most simulation models have not been adequately validated and are not capable of accurately predicting pollutant fate and cleanup in realistic heterogeneous aquifers. Based on these, some hypotheses and perspectives are mentioned to promote the investigation of contaminant migration in high- and low-permeability systems in groundwater.

2.
Environ Sci Pollut Res Int ; 27(33): 41623-41638, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32691313

RESUMEN

Ethylenediaminetetraacetic acid (EDTA) can serve as a washing agent in the remediation of low-permeability layers contaminated by heavy metals (HMs). Therefore, batch adsorption experiments, where pure quartz (SM1) and mineral mixtures (SM2) were used as typical soil minerals (SMs) in low-permeability layers, were implemented to explore the effects of different EDTA concentrations, pH, and exogenous chemicals on the HM-SM-EDTA adsorption system. As the EDTA concentration increased, it gradually cut down the maximum Cd adsorption capacities of SM1 and SM2 from approximately 135 to 55 mg/kg and 2660 to 1453 mg/kg; and the maximum Pb adsorption capacities of SM1 and SM2 were reduced from 660 to 306 mg/kg and 19,677 to 19,262 mg/kg, respectively. When the initial mole ratio (MR = moles of HM ions/sum of moles of HM ions and EDTA) was closer to 0.5, the effect of EDTA was more effective. Additionally, EDTA worked well at pH below 7.0 and 4.0 for Cd and Pb, respectively. Low-molecular-weight organic acids (LMWOAs) affected the system mainly by bridging, complexation, adsorption site competition, and reductive dissolution. Cu2+, Fe2+ ions could significantly increase the Cd and Pb adsorption onto SM2. Notably, there were characteristic changes in mineral particles, including attachment of EDTA and microparticles, agglomeration, connection, and smoother surfaces, making the specific surface area (SSA) decrease from 16.73 to 12.59 m2/g. All findings indicated that EDTA could effectively and economically reduce the HM adsorption capacity of SMs at the reasonable MR value, contact time, and pH; EDTA reduced the HM adsorption capacity of SMs not only by complexation with HM ions but also by decreasing SSA and blocking active sites. Hence, the acquired insight from the presented study can help to promote the remediation of contaminated low-permeability layers in groundwater.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Adsorción , Cadmio , Ácido Edético , Plomo , Metales Pesados/análisis , Minerales , Permeabilidad , Suelo , Contaminantes del Suelo/análisis
3.
Sci Total Environ ; 706: 135708, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31787287

RESUMEN

Pollutant accumulation in the low-permeability zones (LPZs) in groundwater systems is regarded as a secondary source, and its consequent back-diffusion can extend the timeframe of pump-and-treat remediation. However, the bioavailability and mobility of heavy metals and the medium characteristics can be changed during the process. This study investigated the accumulation and back-diffusion law of toxic metals and the effects of ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) on them by implementing a series of tank experiments. In these experiments, a cadmium solution was injected first, and deionized water or EDTA-2Na constantly washed the system consisting of different medium layers. The experimental results showed that the cadmium breakthrough curves had some concentration gradient reverse points where the curves fluctuated with elution by deionized water, which did not exist when EDTA-2Na was the eluent. In these scenarios, the mass of accumulated cadmium in the media before elution was large, with a value of 931 mg (153 mg/kg), when the low-permeability medium was clay. However, when EDTA-2Na was injected together with cadmium, the value dropped to 319 mg (52.3 mg/kg), greatly reducing the cadmium accumulation. Additionally, the use of EDTA-2Na as an eluent resulted in the appearance of a secondary peak in the breakthrough curve, showing that EDTA-2Na accelerated and centralized the back-diffusion. Notably, the reduced cadmium accumulation in LPZs with the elution by EDTA-2Na was partly due to a reduced adsorption capacity of the clay minerals. The above results can advance the technology related to pump-and-treat remediation.

4.
Environ Sci Pollut Res Int ; 22(24): 20101-13, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26300351

RESUMEN

The occurrence and migration of heavy metal in coastal aquifer incorporating tidal effects were investigated in detail by the field geological survey and observation. The continuous groundwater sampling, field observation (for groundwater potentiometric surface elevation, pH, dissolved oxygen, temperature, and salinity), and laboratory analysis (for Cr, Ni, Cu, Zn, Cd, and Pb concentration) were conducted through eight monitoring wells located around the landfill in the northern part of Chongming Island, China. The results showed that the unconfined aquifer medium was estuary-littoral facies deposit of Holocene, mainly gray clayey silt and grey sandy silt, and the groundwater flow was mainly controlled by topography condition of the aquifer formation strike. The background values of Cr, Ni, Cu, Zn, Cd, and Pb in Chongming Island were 3.10 ± 3.09, 0.81 ± 0.25, 1.48 ± 1.09, 43.32 ± 33.06, 0.08 ± 0.16, and 0.88 ± 1.74 µg/L, respectively. Compared with the groundwater samples around the study area, the drinking water was qualified and was free from the seawater intrusion/estuarine facies contaminant encroachment. Pollutant discharge was reflected in water quality parameters, the Cr and Cu concentrations elevated to the peak of 50.07 and 46.00 µg/L, respectively, and meanwhile specific migration regularity was embodied in observation time series as well as other elements. This migration regularity was not fully identical according to correlations between these analyzed elements. Ambient watery environment, anthropogenic disturbance, regional hydrogeological condition, and biogeochemical reactivity on heavy metals reduced/altered the significance of elements correlation in the migration pathway in coastal aquifer.


Asunto(s)
Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , China , Estuarios , Agua Subterránea/química , Concentración de Iones de Hidrógeno , Islas , Agua de Mar/análisis , Calidad del Agua , Pozos de Agua
5.
Mar Pollut Bull ; 62(10): 2220-9, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21802696

RESUMEN

Sources of pollution discharges and water quality samples at 27 stations in 2006 in the coastal waters of Hebei Province, western Bohai Sea, have been analyzed in this study. Pollutant loads from industrial sewages have shown stronger impact on the water environment than those from the general sewages. Analysis indicates that pollution of COD is mainly resulted from land-based point pollutant sources. For phosphate concentration, non-point source pollution from coastal ocean (fishing and harbor areas) plays an important role. To assess the water quality conditions, Organic Pollution Index and Eutrophication Index have been used to quantify the level of water pollution and eutrophication conditions. Results show that pollution was much heavier in the dry season than flood season in 2006. Based on COD and phosphate concentrations, results show that waters near Shahe River, Douhe River, Yanghe River, and Luanhe River were heavily polluted. Water quality in the Qinhuangdao area was better than those in the Tangshan and Cangzhou areas.


Asunto(s)
Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/estadística & datos numéricos , Calidad del Agua/normas , China , Eutrofización , Océanos y Mares , Ríos/química , Agua de Mar/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA