Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Biol (Stuttg) ; 23(5): 850-860, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33932084

RESUMEN

Here, deep sequencing results of the maize transcriptome in leaves and roots were compared under high-nitrogen (HN) and low-nitrogen (LN) conditions to identify differentially expressed circRNAs (DECs). Circular RNAs (circRNAs) are covalently closed non-coding RNA with widely regulatory potency that has been identified in animals and plants. However, the understanding of circRNAs involved in responsive nitrogen deficiency remains to be elucidated. A total of 24 and 22 DECs were obtained from the leaves and roots, respectively. Ten circRNAs were validated by divergent and convergent primers, and 6 DECs showed the same expression tendency validated by reverse transcriptase-quantitative PCR. Integrating the identified differentially expressed miRNAs, 34 circRNAs could act as miRNA decoys, which might play important roles in multiple biological processes, including organonitrogen compound biosynthesis and regulation of the metabolic process. A total of 51 circRNA-parent genes located in the genome-wide association study identified loci were assessed between HN and LN conditions and were associated with root growth and development. In summary, our results provide valuable information regarding further study of maize circRNAs under nitrogen deficiency and provide new insights into screening of candidate genes as well as the improvement of maize regarding nitrogen deficiency resistance. CircRNA-miRNA-mRNA co-expression networks were constructed to explore the circRNAs that participated in biological development and nitrogen metabolism.


Asunto(s)
MicroARNs , ARN Circular , Animales , Estudio de Asociación del Genoma Completo , MicroARNs/genética , Nitrógeno , Plantones/genética , Zea mays/genética
2.
Nanotechnology ; 27(13): 135701, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26895481

RESUMEN

The core-shell structure of Ag@CeO2 was prepared by a novel and facile method, which was based on the photothermal effect of localized surface plasmon resonance (LSPR). Nanoparticles (NPs) of Ag were dispersed in a solution containing citric acid, ethylene glycol and cerium nitrate, then under irradiation, Ag NPs generated heat from LSPR and the heat-induced polymerization reaction in the interface between Ag and the sol resulted in cerium gel formation only on the surface of the Ag NPs. After calcination, Ag@CeO2 was successfully obtained, then Ag@CeO2/SiO2 was prepared by loading Ag@CeO2 on SiO2. The resultant catalyst exhibited favorable activity and stability for CO oxidation. The preparation method proposed here should be extendable to other composites with metallic cores and oxide shells in which the metallic nanoparticle possesses LSPR properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...