Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(20): 8846-8856, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38728579

RESUMEN

Advanced oxidation process (AOP) wet scrubber is a powerful and clean technology for organic pollutant treatment but still presents great challenges in removing the highly toxic and hydrophobic volatile organic compounds (VOCs). Herein, we elaborately designed a bifunctional cobalt sulfide (CoS2)/activated carbon (AC) catalyst to activate peroxymonosulfate (PMS) for efficient toxic VOC removal in an AOP wet scrubber. By combining the excellent VOC adsorption capacity of AC with the highly efficient PMS activation activity of CoS2, CoS2/AC can rapidly capture VOCs from the gas phase to proceed with the SO4•- and HO• radical-induced oxidation reaction. More than 90% of aromatic VOCs were removed over a wide pH range (3-11) with low Co ion leaching (0.19 mg/L). The electron-rich sulfur vacancies and low-valence Co species were the main active sites for PMS activation. SO4•- was mainly responsible for the initial oxidation of VOCs, while HO• and O2 acted in the subsequent ring-opening and mineralization processes of intermediates. No gaseous intermediates from VOC oxidation were detected, and the highly toxic liquid intermediates like benzene were also greatly decreased, thus effectively reducing the health toxicity associated with byproduct emissions. This work provided a comprehensive understanding of the deep oxidation of VOCs via AOP wet scrubber, significantly accelerating its application in environmental remediation.


Asunto(s)
Oxidación-Reducción , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/química , Catálisis , Carbón Orgánico/química , Cobalto/química , Adsorción , Carbono/química
2.
Environ Sci Technol ; 58(3): 1625-1635, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38207092

RESUMEN

The catalytic removal of chlorinated VOCs (CVOCs) in gas-solid reactions usually suffers from chlorine-containing byproduct formation and catalyst deactivation. AOP wet scrubber has recently attracted ever-increasing interest in VOC treatment due to its advantages of high efficiency and no gaseous byproduct emission. Herein, the low-valence Co nanoparticles (NPs) confined in a N-doped carbon nanotube (Co@NCNT) were studied to activate peroxymonosulfate (PMS) for efficient CVOC removal in a wet scrubber. Co@NCNT exhibited unprecedented catalytic activity, recyclability, and low Co ion leakage (0.19 mg L-1) for chlorobenzene degradation in a very wide pH range (3-11). The chlorobenzene removal efficiency was kept stable above 90% over Co@NCNT, much higher than that of nonconfined Co@NCNS (45%). The low-valence Co NPs achieved a continuous electron redox cycling (Co0/Co2+ → Co3+ → Co0/Co2+) and greatly promoted the O-O bond dissociation of PMS with the least energy (0.83 eV) inside the channel of Co@NCNT to form abundant HO• and SO4•-. Thus, the deep oxidation of chlorobenzene was achieved without any biphenyl byproducts from the coupling reaction. This study provided a new avenue for designing novel nanoconfined catalysts with outstanding activity, paving the way for the deep oxidation of CVOC waste gas via AOP wet scrubber.


Asunto(s)
Nanotubos de Carbono , Peróxidos/química , Oxidación-Reducción , Clorobencenos
3.
JACS Au ; 3(5): 1496-1506, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37234109

RESUMEN

The construction of highly active catalysts presents great prospects, while it is a challenge for peroxide activation in advanced oxidation processes (AOPs). Herein, we facilely developed ultrafine Co clusters confined in mesoporous silica nanospheres containing N-doped carbon (NC) dots (termed as Co/NC@mSiO2) via a double-confinement strategy. Compared with the unconfined counterpart, Co/NC@mSiO2 exhibited unprecedented catalytic activity and durability for removal of various organic pollutants even in extremely acidic and alkaline environments (pH from 2 to 11) with very low Co ion leaching. Experiments and density functional theory (DFT) calculations proved that Co/NC@mSiO2 possessed strong peroxymonosulphate (PMS) adsorption and charge transfer capability, enabling the efficient O-O bond dissociation of PMS to HO• and SO4•- radicals. The strong interaction between Co clusters and mSiO2 containing NC dots contributed to excellent pollutant degradation performances by optimizing the electronic structures of Co clusters. This work represents a fundamental breakthrough in the design and understanding of the double-confined catalysts for peroxide activation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...