Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Insect Sci ; 29(4): 977-992, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34687267

RESUMEN

Basic helix-loop-helix (bHLH) transcription factors play an important role in a wide range of metabolic and developmental processes in eukaryotes, and bHLH proteins also participate in immune responses, especially in plants. However, their roles in insects upon entomopathogen infection are unknown. In this study, 54 bHLH genes in 41 families were identified in a polyphagous pest, Spodoptera litura, including a new bHLH gene in group B, which is specifically present in Lepidoptera and was thus named Lep. The conserved amino acids in the bHLH domain, structural architecture, and chromosomal distribution of bHLH genes in S. litura were analyzed. The bHLH genes in Plutella xylostella and Apis mellifera were also updated, and genome-wide comparison and phylogenetic analysis of bHLH members in 5 holometabolous insects were performed. The expression profiles of S. litura bHLH (SlbHLH) genes in 3 tissues at different developmental stages and their responses to S. litura nucleopolyhedrovirus (SpltNPV), Nomuraea rileyi (Nr), and Bacillus thuringiensis (Bt) infection were investigated. More SlbHLHs in group B were expressed and differentially expressed during pathogen infections, and SlbHLHs tended to be downregulated in the midgut of S. litura larvae after B. thuringiensis treatment. Our study provides an overview of bHLH family members in S. litura and their responses to different pathogens used for pest biocontrol. These findings on bHLH members may contribute to uncovering the mechanism of host-pathogen interaction.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Nucleopoliedrovirus , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Abejas , Larva/genética , Larva/metabolismo , Nucleopoliedrovirus/genética , Nucleopoliedrovirus/metabolismo , Filogenia , Spodoptera/genética , Spodoptera/metabolismo
2.
Insect Sci ; 29(3): 783-800, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34405540

RESUMEN

Cadherin, aminopeptidase N (APN) and alkaline phosphatase (ALP) have been characterized as Cry receptors. In this study, comparative genomic analysis of the 3 receptor families was performed in 7 insects. ALPs and APNs are divided into three and eight clades in phylogenetic trees, respectively. ALPs in clade 3 and APNs in clade 1 contain multiple paralogs within each species and most paralogs are located closely in chromosomes. Drosophila melanogaster has expanded APNs in clade 5 and were lowly expressed in midgut. Cadherins are divided into 16 clades; they may diverge before holometabolous insect speciation except for BtR and Cad89D-like clades. Eight insects from different orders containing BtR orthologs are sensitive to Cry1A or Cry3A, while five species without BtR are insensitive to both toxins. Most APNs in clade 1, several ALPs in clade 3, BtR and Cad89D-like genes were highly or moderately expressed in larval midgut of Spodoptera litura and the other six species, and several members in these clades have been identified as Cry receptors. Expressions of putative S. litura Cry receptors in the midgut after exposing to Bt toxins were also analyzed.


Asunto(s)
Bacillus thuringiensis , Proteínas Hemolisinas , Animales , Bacillus thuringiensis/metabolismo , Proteínas Bacterianas/metabolismo , Drosophila melanogaster/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Insectos/metabolismo , Larva/genética , Larva/metabolismo , Filogenia , Receptores de Superficie Celular , Spodoptera/genética , Spodoptera/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...