Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(11): 8157-8167, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38456777

RESUMEN

Perovskite light-emitting diodes (PeLEDs) are the next promising display technologies because of their high color purity and wide color gamut, while two classical emitter forms, i.e., polycrystalline domains and quantum dots, are encountering bottlenecks. Weak carrier confinement of large polycrystalline domains leads to inadequate radiative recombination, and surface ligands on quantum dots are the main annihilation sites for injected carriers. Here, pinpointing these issues, we screened out an amphoteric agent, namely, 2-(2-aminobenzoyl)benzoic acid (2-BA), to precisely control the in situ growth of FAPbI3 (FA: formamidine) nanodomains with enhanced space confinement, preferred crystal orientation, and passivated trap states on the transport-layer substrate. The amphoteric 2-BA performs bidentate chelating functions on the formation of ultrasmall perovskite colloids (<1 nm) in the precursor, resulting in a smoother FAPbI3 emitting layer. Based on monodispersed and homogeneous nanodomain films, a near-infrared PeLED device with a champion efficiency of >22% plus enhanced T80 operational stability was achieved. The proposed perovskite nanodomain film tends to be a mainstream emitter toward the performance breakthrough of PeLED devices covering visible wavelengths beyond infrared.

2.
Adv Mater ; 36(2): e2305238, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37665975

RESUMEN

The limited conductivity of existing transparent conducting oxide (TCO) greatly restricts the further performance improvement of perovskite solar cells (PSCs), especially for large-area devices. Herein, buried-metal-grid tin-doped indium oxide (BMG ITO) electrodes are developed to minimize the power loss caused by the undesirable high sheet resistance of TCOs. By burying 140-nm-thick metal grids into ITO using a photolithography technique, the sheet resistance of ITO is reduced from 15.0 to 2.7 Ω sq-1 . The metal step of BMG over ITO has a huge impact on the charge carrier transport in PSCs. The PSCs using BMG ITO with a low metal step deliver power conversion efficiencies (PCEs) significantly better than that of their counterparts with higher metal steps. Moreover, compared with the pristine ITO-based PSCs, the BMG ITO-based PSCs show a smaller PCE decrease when scaling up the active area of devices. The parallel-connected large-area PSCs with an active area of 102.8 mm2 reach a PCE of 22.5%. The BMG ITO electrodes are also compatible with the fabrication of inverted-structure PSCs and organic solar cells. The work demonstrates the great efficacy of improving the conductivity of TCO by BMG and opens up a promising avenue for constructing highly efficient large-area PSCs.

3.
Angew Chem Int Ed Engl ; 63(3): e202316154, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38058217

RESUMEN

Additive engineering has emerged as one of the most promising strategies to improve the performance of perovskite solar cells (PSCs). Among additives, perovskite nanocrystals (NCs) have a similar chemical composition and matched lattice structure with the perovskite matrix, which can effectively enhance the efficiency and stability of PSCs. However, relevant studies remain limited, and most of them focus on bromide-involved perovskite NCs, which may undergo dissolution and ion exchange within the FAPbI3 host, potentially resulting in an enlarged band gap. In this work, we employ butylamine-capped CsPbI3 NCs (BPNCs) as additives in PSCs, which can be well maintained and serve as seeds for regulating the crystallization and growth of perovskite films. The resultant perovskite film exhibits larger domain sizes and fewer grain boundaries without compromising the band gap. Moreover, BPNCs can alleviate lattice strain and reduce defect densities within the active layer. The PSCs incorporating BPNCs show a champion power conversion efficiency (PCE) of up to 25.41 %, well over both Control of 22.09 % and oleic acid/oleylamine capped CsPbI3 NC (PNC)-based devices of 23.11 %. This work illustrates the key role of nanosized seed surfaces in achieving high-performance photovoltaic devices.

4.
Light Sci Appl ; 12(1): 177, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37482582

RESUMEN

Blue perovskite light-emitting diodes (PeLEDs) are essential in pixels of perovskite displays, while their progress lags far behind their red and green counterparts. Here, we focus on recent advances of blue PeLEDs and systematically review the noteworthy strategies, which are categorized into compositional engineering, dimensional control, and size confinement, on optimizing microstructures, energy landscapes, and charge behaviors of wide-bandgap perovskite emitters (bandgap >2.5 eV). Moreover, the stability of perovskite blue emitters and related devices is discussed. In the end, we propose a technical roadmap for the fabrication of state-of-the-art blue PeLEDs to chase and achieve comparable performance with the other two primary-color devices.

5.
Nano Lett ; 23(2): 685-693, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36594847

RESUMEN

While tuning the electronic structure of Pt can thermodynamically alleviate CO poisoning in direct methanol fuel cells, the impact of interactions between intermediates on the reaction pathway is seldom studied. Herein, we contrive a PtBi model catalyst and realize a complete inhibition of the CO pathway and concurrent enhancement of the formate pathway in the alkaline methanol electrooxidation. The key role of Bi is enriching OH adsorbates (OHad) on the catalyst surface. The competitive adsorption of CO adsorbates (COad) and OHad at Pt sites, complementing the thermodynamic contribution from alloying Bi with Pt, switches the intermediate from COad to formate that circumvents CO poisoning. Hence, 8% Bi brings an approximately 6-fold increase in activity compared to pure Pt nanoparticles. This notion can be generalized to modify commercially available Pt/C catalysts by a microwave-assisted method, offering opportunities for the design and practical production of CO-tolerance electrocatalysts in an industrial setting.

6.
ACS Nano ; 16(10): 16869-16879, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36250595

RESUMEN

Building a reliable relationship between the electronic structure of alloyed metallic catalysts and catalytic performance is important but remains challenging due to the interference from many entangled factors. Herein, a PdBi surface alloy structural model, by tuning the deposition rate of Bi atoms relative to the atomic interdiffusion rate at the interface, realizes a continuous modulation of the electronic structure of Pd. Using advanced X-ray characterization techniques, we provide a precise depiction of the electronic structure of the PdBi surface alloy. As a result, the PdBi catalysts show enhanced propene selectivity compared with the pure Pd catalyst in the selective hydrogenation of propyne. The prevented formation of saturated ß-hydrides in the subsurface layers and weakened propene adsorption on the surface contribute to the high selectivity. Our work provides in-depth understanding of the electronic properties of surface alloy structure and underlies the study of the electronic structure-performance relationship in bimetallic catalysts.

7.
Small ; 18(13): e2107548, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35146921

RESUMEN

All-inorganic lead halide perovskite (CsPbX3 , X = Cl, Br, I, or their mixture) nanocrystals (NCs) have achieved inspiring advancements in optoelectronic fields but still suffer from poor durability when exposed to environmental stimuli such as water, irradiation and heat. Herein, a strategy of employing pyrophosphate as the inert shell for CsPbX3 NCs is reported. The strong binding between pyrophosphate and CsPbBr3 surface can stabilize the perovskite structure well. The as-obtained core@shell CsPbBr3 @NH4 AlP2 O7 NCs exhibit impressive stability against water and maintain the initial optical properties with negligible change in 400 days. Furthermore, significant improvement of irradiation/thermal resistance is realized due to the protecting role of pyrophosphate. The NCs can retain 100% and ≈90% of the original PL after hundreds of heating/cooling cycles and several hundred hours of UV light irradiation, respectively. As a result, the core@shell products can be directly used for high-resolution inkjet printing, enabling the printed fluorescent information to be resistant under harsh environmental conditions. This work provides a promising way for the synthesis of highly stable encapsulated perovskite NCs and demonstrates a great potential in practical applications.


Asunto(s)
Nanopartículas , Agua , Difosfatos , Nanopartículas/química
8.
Nanoscale ; 13(46): 19341-19351, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34787165

RESUMEN

Lead halide perovskite NCs (APbX3, A = formamidinium (FA), methylammonium (MA) or Cs; X = Cl, Br, I or their mixture) have attracted unprecedented attention due to their excellent photophysical properties and wide application prospects. However, the inherent ionic structure of APbX3 NCs makes them very sensitive to external conditions such as water and oxygen, resulting in poor stability. As a feasible strategy, encapsulation is considered to be effective in improving the stability. In this minireview, we focus on single-particle-level coating, which not only can improve the stability but also maintain the nano effect of the original NCs. This review summarizes the fundamental information on APbX3 NCs and the necessity of single-particle-level coating. Subsequently, a variety of heterostructures at the single-particle level are introduced in detail. Then, their applications are summarized. Moreover, we discuss the challenges and prospects of the single-particle-level heterostructures based on APbX3 NCs.

9.
J Am Chem Soc ; 143(48): 20513-20523, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34812625

RESUMEN

Creating highly branched plasmonic superparticles can effectively induce broadband light absorption and convert light to heat regardless of the light wavelength, angle, and polarization. However, their direct synthesis in a controllable manner remains a significant challenge. In this work, we propose a strain modulation strategy to produce branched Au nanostructures that promotes the growth of Au on Au seeds in the Volmer-Weber (island) mode instead of the typical Frank-van der Merwe (layer-by-layer) mode. The key to this strategy is to continuously deposit polydopamine formed in situ on the growing surface of the seeds to increase the chemical potential of the subsequent deposition of Au, thus achieving continuous heterogeneous nucleation and growth. The branched Au superparticles exhibit a photothermal conversion efficiency of 91.0% thanks to their small scattering cross-section and direction-independent absorption. Even at a low light power of 0.5 W/cm2 and a low dosage of 25 ppm, these particles show an excellent efficacy in photothermal cancer therapy. This work provides the fundamental basis for designing branched plasmonic nanostructures and expands the application scope of the plasmonic photothermal effect.

10.
Dalton Trans ; 50(37): 12826-12830, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34499057

RESUMEN

This work reports a CsI stripping/insertion process that enables the reversible transformation between blue-emissive Cs3Cu2I5 and yellow-emissive CsCu2I3 upon moisture/evaporation treatment. The successful transformation can be ascribed to the unique space confinement of the SiO2 matrix and ligand-free feature of perovskite nanocrystals, which can be a good candidate for anti-counterfeiting.

11.
ACS Nano ; 15(8): 13129-13139, 2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34346205

RESUMEN

Lead halide perovskite nanocrystals (CsPbX3 NCs) have been regarded as promising materials in photocatalysis. Combining metal single atoms with CsPbX3 NCs may be a practical way in exploring perovskite-based catalysts. However, such hybrids have not been achieved experimentally yet, mainly due to the weak interaction between the metal atom and the CsPbX3 surface. Here, we demonstrate that Pt single atoms can be deposited on CsPbBr3 NCs through a photoassisted approach, in which the surface was partially oxidized first, followed by the anchoring of Pt single atoms through the formation of Pt-O and Pt-Br bonds. The deposition of Pt single atoms can significantly change the photophysical properties of CsPbBr3 NCs by inducing the generation of deep trap states in the band gap. The as-prepared Pt-SA/CsPbBr3 can be used as efficient and durable catalysts for photocatalytic semi-hydrogenation of propyne. A CsPbBr3 nanocrystal might be a suitable substrate for anchoring other metal single atoms, such as Cu, Au, Ag, Pd, and so on.

12.
Chemistry ; 27(45): 11643-11648, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34089282

RESUMEN

Butadiene (BD) is a critical raw material in chemical industry, which is conventionally produced from naphtha cracking. The fast-growing demand of BD and the limited oil reserve motivate chemists to develop alternative methods for BD production. Shale gas, which mainly consists of light alkanes, has been considered as cheap raw materials to replace oil for BD production via n-butane direct dehydrogenation (n-BDH). However, the quest for highly-efficient catalysts for n-BDH is driven by the current drawback of low BD selectivity. Here, we demonstrate a strategy for boosting the selectivity of BD by suppressing dehydroisomerization, an inevitable step in the conventional n-BDH process which largely reduces the selectivity of BD. Detailed investigations show that the addition of alkali-earth metals (e. g., Mg and Ca) into Pt-Ga2 O3 /S10 catalysts increases Pt dispersity, suppresses coke deposition and dehydroisomerization, and thus leads to the significant increase of BD selectivity. The optimized catalyst displays an initial BD selectivity of 34.7 % at a n-butane conversion of 82.1 % at 625 °C, which outperforms the reported catalysts in literatures. This work not only provides efficient catalysts for BD production via n-BDH, but also promotes the researches on catalyst design in heterogeneous catalysis.

13.
Nanoscale ; 13(21): 9634-9640, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34008678

RESUMEN

All-inorganic lead halide perovskite nanocrystals (NCs) have been promising candidates in various optoelectrical fields. It is still challenging to further enhance their optical properties and stability to meet the requirements of practical applications. Herein, we develop a passivation strategy towards CsPbBr3 NCs by using inorganic phosphate and bromide anions. Phosphate can coordinate with lead ions on CsPbBr3 NCs as capping ligands; meanwhile, excess bromide can strengthen the repair of surface trapping sites. The treated NCs exhibit near-unity quantum yield and boosted radiative recombination. In addition, obvious enhancement has been realized in their durability against polar solvents. A white light emitting diode (WLED) has been fabricated by employing the passivated NCs as a green light source, which possesses high luminous efficiency and operational stability.

14.
ACS Appl Mater Interfaces ; 13(3): 4017-4025, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33433989

RESUMEN

One of the main challenges of all-inorganic cesium lead halide (CsPbX3) perovskite nanocrystals (NCs) in photocatalysis is their poor stability in hostile environments such as polar solvents. Herein, we report highly stable CsPbBr3 colloidal nanocrystal clusters (CNCs) with uniform morphology and size prepared by using a PVP-assisted reprecipitation method. A possible formation process through a self-assembly avenue is proposed. These CsPbBr3 CNCs exhibit much enhanced resistance against a variety of polar solvents in comparison with CsPbBr3 NCs obtained from the commonly used hot-injection method. In addition, this method can be generalized to the synthesis of lead-free perovskites CNCs. The as-prepared CsPbBr3 CNCs display good reactivity and high durability in photocatalytic degradation of methylene blue in alcoholic systems. This work will shed some light on the stabilization of perovskite NCs in polar solvents and perovskite NC-based photocatalysts.

15.
Nano Lett ; 21(1): 597-604, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33258607

RESUMEN

Although lead halide perovskites are demonstrated to be promising photocatalysts for hydrogen evolution from hydrogen halide splitting, it still remains challenging to fabricate efficient and stable catalysts. Here MoS2 nanoflowers with abundant active sites are assembled with methylammonium lead iodide (MAPbI3) microcrystals to form a new heterostructure. Its hydrogen evolution rate can reach up to about 30 000 µmol g-1 h-1, which is more than 1000-fold higher than pristine MAPbI3 under visible light irradiation (λ ≥ 420 nm). Importantly, the solar HI splitting efficiency reaches 7.35%, one of the highest efficiencies so far. The introduction of MoS2 with proper band alignment and unsaturated species can efficiently promote the charge separation and afford more active sites for H2 production. This finding not only provides a highly efficient and stable photocatalyst for hydrogen evolution but also offers a useful modification strategy on lead halide perovskites.

16.
Nano Lett ; 20(10): 7751-7759, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32959660

RESUMEN

Developing efficient Pt-based electrocatalysts for the methanol oxidation reaction (MOR) is of pivotal importance for large-scale application of direct methanol fuel cells (DMFCs), but Pt suffers from severe deactivation brought by the carbonaceous intermediates such as CO. Here, we demonstrate the formation of a bismuth oxyhydroxide (BiOx(OH)y)-Pt inverse interface via electrochemical reconstruction for enhanced methanol oxidation. By combining density functional theory calculations, X-ray absorption spectroscopy, ambient pressure X-ray photoelectron spectroscopy, and electrochemical characterizations, we reveal that the BiOx(OH)y-Pt inverse interface can induce the electron deficiency of neighboring Pt; this would result in weakened CO adsorption and strengthened OH adsorption, thereby facilitating the removal of the poisonous intermediates and ensuring the high activity and good stability of Pt2Bi sample. This work provides a comprehensive understanding of the inverse interface structure and deep insight into the active sites for MOR, offering great opportunities for rational fabrication of efficient electrocatalysts for DMFCs.

17.
Angew Chem Int Ed Engl ; 59(34): 14527-14532, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32506624

RESUMEN

Hydrochromic materials that can reversibly change color upon water treatment have attracted much attention owing to their potential applications in diverse fields. Herein, for the first time, we report that space-confined CsPbBr3 nanocrystals (NCs) are hydrochromic. When CsPbBr3 NCs are loaded into a porous matrix, reversible transition between luminescent CsPbBr3 and non-luminescent CsPb2 Br5 can be achieved upon the exposure/removal of water. The potential applications of hydrochromic CsPbBr3 NCs in anti-counterfeiting are demonstrated by using CsPbBr3 NCs@mesoporous silica nanospheres (around 100 nm) as the starting material. Owing to the small particle size and negatively charged surface, the as-prepared particles can be laser-jet printed with high precision and high speed. We demonstrate the excellent stability over repeated transformation cycles without color fade. This new discovery may not only deepen the understanding of CsPbX3 , but also open a new way to design CsPbX3 materials for new applications.

18.
Nano Lett ; 19(6): 4151-4157, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31117764

RESUMEN

X-type ligands, for example, the pair of oleylamine (OAm) and oleic acid (OA), have been widely used to prepare CsPbX3 nanocrystals (NCs). However, the proton exchange between coordinated OAm and OA may induce the detachment of ligands, resulting in poor performance after cleaning or long-time storage. Herein, density functional theory calculations predict that primary amines (L-type ligands) can stabilize a PbBr x-rich surface and yield a trap-free material with fully delocalized valence band maximum and conduction band minimum states, which can significantly improve the photophysical properties and stability of CsPbBr3 NCs. Along this prediction, a room-temperature reprecipitation method using L-type ligands (OAm, n-octylamine, or undecylamine) as the sole capping ligand has been developed to synthesize high-quality CsPbBr3 NCs with near-unity photoluminescence quantum yield and dramatically improved stability against purification and water treatment. The enhancement can be attributed to the strong binding of unprotonated amines to lead atoms and the effective surface passivation provided by the resulted PbBr x-rich surface, which are highly consistent with the theoretical predictions. This work not only offers an approach to synthesize high-quality perovskite NCs but also provides an in-depth understanding of the surface modification of CsPbX3 NCs for practical applications.

19.
Nanoscale ; 11(7): 3193-3199, 2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30724301

RESUMEN

Smart fluorescent materials have attracted much attention due to their promising applications in various fields. Here, we demonstrate a reversible fluorescence switching of CsPbI3 nanocrystals (NCs) using photochromic AgI NCs as the photosensitizer. Upon light irradiation, AgI NCs are decomposed into metallic Ag and elemental I2, leading to the formation of Ag-CsPbI3 heterostructures. Because Ag has a lower Fermi level than that of CsPbI3, excited electrons will transfer from CsPbI3 to Ag, resulting in the quenching of photoluminescence emission. When the composite is stored in the dark, metallic Ag is oxidized into AgI, and the PL emission of CsPbI3 NCs can be recovered. The application of the AgI/CsPbI3 system has been demonstrated as a rewritable platform. This work may shed light on the exploration of CsPbX3 NCs for applications in smart fluorescent materials.

20.
ACS Appl Mater Interfaces ; 11(3): 3351-3359, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30592200

RESUMEN

Although all-inorganic CsPbX3 (X = Cl, Br, I) nanocrystals (NCs) have been considered as a promising material for photoelectronic devices, their applications are still limited because of their poor stability and the lack of in-depth understanding. Here, we demonstrate a post-treatment method for the preparation of ultrathin CsPbX3 nanowires (NWs) by treating CsPbBr3 nanocubes with thiourea solution. A systematic study showed a consecutive interfacial transformation process, in which CsPbBr3 nanocubes were first converted to Cs4PbBr6 NCs in the presence of thiourea, followed by a further transformation to CsPbBr3 NCs through an interfacial CsX-stripping process. To reduce the surface energy, an oriented attachment process has been realized and CsPbBr3 NCs aggregated to form ultrathin NWs. The ultrathin CsPbBr3 NWs exhibited high photoluminescence quantum yield (up to 60%) and high resistance to water treatment, which can be attributed to the surface passivation by thiourea. In addition to thiourea, cysteine and thioacetamide that contain the thiol group can also be used to trigger this transformation. This work can not only offer a facile method for the synthesis of efficient and stable ultrathin CsPbBr3 NWs but also help to reveal the in-depth mechanisms which may be very useful in the field of metal halide perovskite NCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...