Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37447607

RESUMEN

Polymer-stabilized liquid crystals (PSLCs) are multi-functional materials consisting of polymer networks in a continuous phase of liquid crystals (LCs), of which polymer networks provide anchoring energy to align the LCs. A number of improvements are detailed, including polymer-stabilized nematic liquid crystals (PSNLCs), polymer-stabilized cholesteric liquid crystals (PSCLCs), polymer-stabilized blue phase liquid crystals (PSBPLCs), polymer-stabilized smectic liquid crystals (PSSLCs), polymer-stabilized ferroelectric liquid crystals (PSFLCs), and polymer-stabilized antiferroelectric liquid crystals (PSAFLCs) in this review. Polymer stabilization has achieved multiple functionalities for LCs; in smart windows, a sufficiently strong electric field allows the LCs to reorient and enables switching from a scattering (transparent) state to a transparent (scattering) state. For broadband reflectors, the reflection bandwidth of LCs is manually tuned by electric fields, light, magnetic fields, or temperature. PSBPLCs open a new way for next-generation displays, spatial light modulators, sensors, lasers, lenses, and photonics applications. Polymer networks in PSFLCs or PSAFLCs enhance their grayscale memories utilized in flexible displays and energy-saving smart cards. At the end, the remaining challenges and research opportunities of PSLCs are discussed.

2.
Nanoscale ; 15(4): 1484-1492, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36594788

RESUMEN

Optical diffusers made of polymer composite materials are vital for many photonic and optoelectronic applictions such as backlight unit (BLU) in liquid crystal displays (LCDs), light extraction unit of organic light emitting diodes (OLEDs), and solar cells. We have described the types of optical diffusers, the theory and measurement of light scattering, some common approaches for fabricating optical diffusers, the potential applications and recent developments of optical diffusers containing optical physical unclonable functions (PUFs), optical random number generators, passive stretchable radiative coolers, diffuser -based deep neural networks, lensless cameras or imaging systems, and three dimensinonal (3D) displays including two dimensional (2D)/3D switchable displays, which provide effective ways for designing high-performance optical films in the applications of optical devices. To satisfy the requirements for applications in stretchable optoelectronics and optomechanics, tunable optical diffusers stimulated by electric field, heat, light, mechanical field, or ultrasound attract much attention. Polymer/liquid crystal (LC) composite films with tunable light transmittance, haze, and diffusing intensity have been firstly provided and set a great foundation for the next generation of flexible and switchable optical diffusers.

3.
ACS Appl Mater Interfaces ; 14(49): 55062-55074, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36472305

RESUMEN

Hydrogels have been extensively used in agriculture to improve crop yields for their excellent properties. However, they are currently used either as pesticide delivery platforms or water retention agents alone; the combination of these two functions into one agricultural hydrogel formulation has never been reported, which is crucial to promote sustainable development in agriculture. Herein, using poly(ß-cyclodextrin) and adamantane-grafted poly(acrylic acid) (PAA-Ada) as the host and guest, respectively, an easy operating, multi-responsive, and safer hydrogel delivery system for insecticides is fabricated by the host-guest interaction between cyclodextrin and adamantane, which can load uniformly dispersed insecticides (fipronil, imidacloprid, and thiamethoxam) up to 60%. Benefiting from the carboxyl and hydroxyl groups on polymer chains, different temperatures (25, 35, and 45 °C) and pH values (5.0, 6.8, and 10.0) change the intermolecular forces within the hydrogel network and then the diffusion of the content, finally resulting in controlled release behaviors. Besides, this platform can rapidly release the insecticides in the presence of amyloglucosidase due to its ring-opening effect on cyclodextrin. Moreover, this platform exhibits high water-retaining capacity toward soil, which can increase the maximum water absorption of nutrient soil and quartz sand by 31.6 and 13.9%, respectively, and slows down the water loss. Compared with commercial formulation, this smart system reduces the acute toxicity to non-target organism earthworms by 52.4% and improves the efficacy against target organism aphids by 47.3%, showing better durability, lower environmental toxicity, and higher efficiency. To our knowledge, this is the first idea that simultaneously adopts the water-retaining capacity and controlled release ability of hydrogels to improve insecticide efficacy. In this regard, this smart hydrogel platform holds great potentials as slow-release granules with water-holding ability for protection against insect pests, providing an alternative platform for the sustainable development in green agriculture.


Asunto(s)
Adamantano , Ciclodextrinas , Insecticidas , Agua/química , Preparaciones de Acción Retardada , Suelo/química , Hidrogeles/química , Control de Plagas
4.
Nat Commun ; 12(1): 1440, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664257

RESUMEN

Fabricating functional materials via molecular self-assembly is a promising approach, and precisely controlling the molecular building blocks of nanostructures in the self-assembly process is an essential and challenging task. Blue phase liquid crystals are fascinating self-assembled three-dimensional nanomaterials because of their potential information displays and tuneable photonic applications. However, one of the main obstacles to their applications is their narrow temperature range of a few degrees centigrade, although many prior studies have broadened it to tens via molecular design. In this work, a series of tailored uniaxial rodlike mesogens disfavouring the formation of blue phases are introduced into a blue phase system comprising biaxial dimeric mesogens, a blue phase is observed continuously over a temperature range of 280 °C, and the range remains over 132.0 °C after excluding the frozen glassy state. The findings show that the molecular synergistic self-assembly behavior of biaxial and uniaxial mesogens may play a crucial role in achieving the ultrastable three-dimensional nanostructure of blue phases.

5.
ACS Appl Mater Interfaces ; 10(26): 22757-22766, 2018 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-29894150

RESUMEN

In this work, a bistable polymer framework liquid crystal (PFLC) thin film by thermal curing of epoxy monomers with two different thiols, a traditional flexible-structure thiol and a novel original rigid-structure thiol, has been successfully fabricated, combining a novel mixed morphology of polymer matrix and cholesteric liquid crystals with negative dielectric anisotropy. The polymer framework morphology has been formed by curing two types of epoxy monomers with two types of thiols, and the liquid crystals tend to be focal conic textures with large size domains at the initial state in the PFLC film so that it has a moderate light transmissivity at this state between the transparent state and the opaque state. Thus, the devices based on PFLC films can be switched reversibly between the transparent state and the opaque state by alternative electric field. In addition, the states can be sustained after the electric field is removed. The bistable memory effect comes from the anchoring effects of the polymer frameworks with a novel morphology in the microdomains of the PFLCs. Therefore, the optimized bistable PFLC film keeps its initial state without external electric field and any other energy consumption for a long time after altering the state by applying an instant electric field. The special polymer frameworks in the bistable PFLC films endow the films with excellent electro-optical properties and mechanical properties. The devices are energy-efficient and cost-saving and have great potential applications in energy-efficient reflective displays, electronic papers, writing tablets, and smart windows.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA