Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 1 de 1
1.
J Hazard Mater ; 467: 133667, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38325102

Activated sludge extracellular polymeric substances (ASEPSs) comprise most dissolved organic matters (DOMs) in the tail water. However, the understanding of the link between the photolysis of antibiotic and the photo-reactivity/photo-persistence of ASEPS components is limited. This study first investigated the photochemical behaviors of ASEPS's components (humic acids (HA), hydrophobic substances (HOS) and hydrophilic substances (HIS)) separated from municipal sludge's EPS (M-EPS) and nitrification sludge's EPS (N-EPS) in the photolysis of sulfadiazine (SDZ). The results showed that 60% of SDZ was removed by the M-EPS, but the effect in the separated components was weakened, and only 24% - 39% was degraded. However, 58% of SDZ was cleaned by HOS in N-EPS, which was 23% higher than full N-EPS. M-EPS components had lower steady-state concentrations of triplet intermediates (3EPS*), hydroxyl radicals (·OH) and singlet oxygen (1O2) than M-EPS, but N-EPS components had the highest concentrations (5.96 ×10-15, 8.44 ×10-18, 4.56 ×10-13 M, respectively). The changes of CO, C-O and O-CO groups in HA and HOS potentially correspond to reactive specie's generation. These groups change little in HIS, which may make it have radiation resistance. HCO-3 and NO-3 decreased the indirect photolysis of SDZ, and its by-product N-(2-Pyrimidinyl)1,4-benzenediamine presents high environmental risk.


Extracellular Polymeric Substance Matrix , Sewage , Sewage/chemistry , Extracellular Polymeric Substance Matrix/chemistry , Sulfadiazine/analysis , Anti-Bacterial Agents/analysis , Photolysis , Humic Substances/analysis
...