Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.408
1.
Neural Netw ; 176: 106343, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38701598

Document-level event extraction aims to extract event records from a whole document that contain numerous entities scattered across multiple sentences. Efficiently modeling the interactions among these entities is crucial. However, previous methods suffer from two main shortcomings. Firstly, they tend to implicitly model key information, which can result in representations with higher levels of noise. Secondly, they excessively consider irrelevant entities, thereby reducing extraction efficiency and precision. To address these issues, we propose a novel Two-phase Graph Inference Network (TGIN) approach for extracting document-level events. In the first phase, TGIN constructs a heterogeneous document-level graph to capture complex interactions among nodes of different granularity, enabling the acquisition of document-aware features. Subsequently, a dedicated module is developed to extract relevant entity pairs within the same event record. This module utilizes a key information aggregator with an attention mechanism to explicitly aggregate key sentences for entity pairs. In the second phase, the entity links predicted in the first phase serve as prior information to construct the entity-level graph, which focuses on modeling interactions between entity pairs that potentially share the same event link, effectively reducing error propagation. Experimental results on the publicly available document-level event extraction dataset ChFinAnn demonstrate the superiority of our framework over most existing models.

2.
Nat Commun ; 15(1): 4202, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760354

Sulfides are promising electrolyte materials for all-solid-state Li metal batteries due to their high ionic conductivity and machinability. However, compatibility issues at the negative electrode/sulfide electrolyte interface hinder their practical implementation. Despite previous studies have proposed considerable strategies to improve the negative electrode/sulfide electrolyte interfacial stability, industrial-scale engineering solutions remain elusive. Here, we introduce a scalable Li-Al-Cl stratified structure, formed through the strain-activated separating behavior of thermodynamically unfavorable Li/Li9Al4 and Li/LiCl interfaces, to stabilize the negative electrode/sulfide electrolyte interface. In the Li-Al-Cl stratified structure, Li9Al4 and LiCl are enriched at the surface to serve as a robust solid electrolyte interphase and are diluted in bulk by Li metal to construct a skeleton. Enabled by its unique structural characteristic, the Li-Al-Cl stratified structure significantly enhances the stability of negative electrode/sulfide electrolyte interface. This work reports a strain-activated phase separation phenomenon and proposes a practical pathway for negative electrode/sulfide electrolyte interface engineering.

3.
Small ; : e2401491, 2024 May 15.
Article En | MEDLINE | ID: mdl-38751305

The design and fabrication of a lithiophilic skeleton are highly important for constructing advanced Li metal anodes. In this work, a new lithiophilic skeleton is reported by planting metal sulfides (e.g., Ni3S2) on vertical graphene (VG) via a facile ultrafast Joule heating (UJH) method, which facilitates the homogeneous distribution of lithiophilic sites on carbon cloth (CC) supported VG substrate with firm bonding. Ni3S2 nanoparticles are homogeneously anchored on the optimized skeleton as CC/VG@Ni3S2, which ensures high conductivity and uniform deposition of Li metal with non-dendrites. By means of systematic electrochemical characterizations, the symmetric cells coupled with CC/VG@Ni3S2 deliver a steady long-term cycle within 14 mV overpotential for 1800 h (900 cycles) at 1 mA cm-2 and 1 mAh cm-2. Meanwhile, the designed CC/VG@Ni3S2-Li||LFP full cell shows notable electrochemical performance with a capacity retention of 92.44% at 0.5 C after 500 cycles and exceptional rate performance. This novel synthesis strategy for metal sulfides on hierarchical carbon-based materials sheds new light on the development of high-performance lithium metal batteries (LMBs).

4.
Pediatr Radiol ; 2024 May 23.
Article En | MEDLINE | ID: mdl-38782776

Tetralogy of Fallot is the most prevalent cyanotic congenital heart disease, requiring lifelong multimodality non-invasive cardiac imaging, such as echocardiography, cardiothoracic computed tomography, and cardiac magnetic resonance imaging. As imaging techniques continuously evolve and are gradually integrated into clinical practice, there is a critical need to update multimodality imaging protocols. Over the last two decades, cardiothoracic computed tomography imaging techniques have advanced remarkably, significantly enhancing its role in evaluating patients with tetralogy of Fallot. In this review, we describe contemporary multimodality non-invasive cardiac imaging protocols for tetralogy of Fallot, emphasizing the expanding role of cardiothoracic computed tomography. Additionally, we present standardized reporting forms designed to facilitate the clinical adoption of these protocols.

5.
Nat Commun ; 15(1): 4402, 2024 May 23.
Article En | MEDLINE | ID: mdl-38782924

Endowing the widely-used synthetic polymer nylon with high-performance organic room-temperature phosphorescence would produce advanced materials with a great potential for applications in daily life and industry. One key to achieving this goal is to find a suitable organic luminophore that can access the triplet excited state with the aid of the nylon matrix by controlling the matrix-luminophore interaction. Herein we report highly-efficient room-temperature phosphorescence nylons by doping cyano-substituted benzimidazole derivatives into the nylon 6 matrix. These homogeneously doped materials show ultralong phosphorescence lifetimes of up to 1.5 s and high phosphorescence quantum efficiency of up to 48.3% at the same time. The synergistic effect of the homogeneous dopant distribution via hydrogen bonding interaction, the rigid environment of the matrix polymer, and the potential energy transfer between doped luminophores and nylon is important for achieving the high-performance room-temperature phosphorescence, as supported by combined experimental and theoretical results with control compounds and various polymeric matrices. One-dimensional optical fibers are prepared from these doped room-temperature phosphorescence nylons that can transport both blue fluorescent and green afterglow photonic signals across the millimeter distance without significant optical attenuation. The potential applications of these phosphorescent materials in dual information encryption and rewritable recording are illustrated.

6.
J Mol Cell Biol ; 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38587834

Glutamate dehydrogenase 1 (GLUD1) is implicated in oncogenesis. However, little is known about the relationship between GLUD1 and hepatocellular carcinoma (HCC). In the present study, we demonstrated that the expression levels of GLUD1 significantly decreased in tumors, which was relevant to the poor prognosis of HCC. Functionally, GLUD1 silencing enhanced the growth and migration of HCC cells. Mechanistically, the upregulation of interleukin-32 through AKT activation contributes to GLUD1 silencing-facilitated hepatocarcinogenesis. The interaction between GLUD1 and AKT, as well as α-ketoglutarate regulated by GLUD1, can suppress AKT activation. In addition, LIM and SH3 protein 1 (LASP1) interacts with GLUD1 and induces GLUD1 degradation via the ubiquitin-proteasome pathway, which relies on the E3 ubiquitin ligase synoviolin (SYVN1), whose interaction with GLUD1 is enhanced by LASP1. In hepatitis B virus (HBV)-related HCC, the HBV X protein (HBX) can suppress GLUD1 with the participation of LASP1 and SYVN1. Collectively, our data suggest that GLUD1 silencing is significantly associated with HCC development, and LASP1 and SYVN1 mediate the inhibition of GLUD1 in HCC, especially in HBV-related tumors.

7.
Article En | MEDLINE | ID: mdl-38628818

Purpose: Results from studies of extended capecitabine after the standard adjuvant chemotherapy in early stage triple-negative breast cancer (TNBC) were inconsistent, and only low-dose capecitabine from the SYSUCC-001 trial improved disease-free survival (DFS). Adjustment of the conventional adjuvant chemotherapy doses affect the prognosis and may affect the efficacy of subsequent treatments. This study investigated whether the survival benefit of the SYSUCC-001 trial was affected by dose adjustment of the standard adjuvant chemotherapy or not. Patients and Methods: We reviewed the adjuvant chemotherapy regimens before the extended capecitabine in the SYSUCC-001 trial. Patients were classified into "consistent" (standard acceptable dose) and "inconsistent" (doses lower than acceptable dose) dose based on the minimum acceptable dose range in the landmark clinical trials. Cox proportional hazards model was used to investigate the impact of dose on the survival outcomes. Results: All 434 patients in SYSUCC-001 trial were enrolled in this study. Most of patients administered the anthracycline-taxane regimen accounted for 88.94%. Among patients in the "inconsistent" dose, 60.8% and 47% received lower doses of anthracycline and taxane separately. In the observation group, the "inconsistent" dose of anthracycline and taxane did not affect DFS compared with the "consistent" dose. Moreover, in the capecitabine group, the "inconsistent" anthracycline dose did not affect DFS compared with the "consistent" dose. However, patients with "consistent" taxane doses benefited significantly from extended capecitabine (P=0.014). The sufficient dose of adjuvant taxane had a positive effect of extended capecitabine (hazard ratio [HR] 2.04; 95% confidence interval [CI] 1.02 to 4.06). Conclusion: This study found the dose reduction of adjuvant taxane might negatively impact the efficacy of capecitabine. Therefore, the reduction of anthracycline dose over paclitaxel should be given priority during conventional adjuvant chemotherapy, if patients need dose reduction and plan for extended capecitabine.

8.
World J Gastroenterol ; 30(11): 1497-1523, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38617454

Esophageal squamous cell carcinoma (ESCC) is a malignant epithelial tumor, characterized by squamous cell differentiation, it is the sixth leading cause of cancer-related deaths globally. The increased mortality rate of ESCC patients is predominantly due to the advanced stage of the disease when discovered, coupled with higher risk of metastasis, which is an exceedingly malignant characteristic of cancer, frequently leading to a high mortality rate. Unfortunately, there is currently no specific and effective marker to predict and treat metastasis in ESCC. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules, approximately 22 nucleotides in length. miRNAs are vital in modulating gene expression and serve pivotal regulatory roles in the occurrence, progression, and prognosis of cancer. Here, we have examined the literature to highlight the intimate correlations between miRNAs and ESCC metastasis, and show that ESCC metastasis is predominantly regulated or regulated by genetic and epigenetic factors. This review proposes a potential role for miRNAs as diagnostic and therapeutic biomarkers for metastasis in ESCC metastasis, with the ultimate aim of reducing the mortality rate among patients with ESCC.


Carcinoma , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , MicroRNAs , Humans , MicroRNAs/genetics , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Neoplasms/genetics , Epigenomics
9.
BMC Psychol ; 12(1): 216, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637843

BACKGROUND: Problematic Internet Use (PIU), characterized by failures to control the overuse of internet, is associated with a range of functional impairments. However, there is limited research on the specific impact of PIU on inhibitory control functions, particularly in terms of differentiating between prepotent response inhibition and interference control. Therefore, the main objective of this study is to investigate these two components of inhibitory control in individuals with PIU. METHODS: Thirty participants who met the PIU criteria and 30 control participants were included in the present study. All participants completed the Go/No-Go and Flanker tasks, in which internet-related images and words were used as task stimuli. RESULTS: In the Go/No-Go task, all participants exhibited poorer performance in inhibiting internet-related stimuli compared to internet-unrelated stimuli, during the No-Go trials. In the Flanker task, results revealed a three-way interaction of Group, Stimulus type and Congruency. Specifically, in the incongruent condition, participants with PIU exhibited slower responses for internet-unrelated targets compared to internet-related targets, whereas no similar effect was observed among individuals with low internet use. CONCLUSIONS: The findings suggest that difficulties in controlling the interference effect of internet-related information represent a key dysfunction in inhibitory control of PIU.


Behavior, Addictive , Humans , Internet Use , Inhibition, Psychological , Internet
10.
Cell Commun Signal ; 22(1): 234, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38643181

BACKGROUND: p66Shc, as a redox enzyme, regulates reactive oxygen species (ROS) production in mitochondria and autophagy. However, the mechanisms by which p66Shc affects autophagosome formation are not fully understood. METHODS: p66Shc expression and its location in the trophoblast cells were detected in vivo and in vitro. Small hairpin RNAs or CRISPR/Cas9, RNA sequencing, and confocal laser scanning microscope were used to clarify p66Shc's role in regulating autophagic flux and STING activation. In addition, p66Shc affects mitochondrial-associated endoplasmic reticulum membranes (MAMs) formation were observed by transmission electron microscopy (TEM). Mitochondrial function was evaluated by detected cytoplastic mitochondrial DNA (mtDNA) and mitochondrial membrane potential (MMP). RESULTS: High glucose induces the expression and mitochondrial translocation of p66Shc, which promotes MAMs formation and stimulates PINK1-PRKN-mediated mitophagy. Moreover, mitochondrial localized p66Shc reduces MMP and triggers cytosolic mtDNA release, thus activates cGAS/STING signaling and ultimately leads to enhanced autophagy and cellular senescence. Specially, we found p66Shc is required for the interaction between STING and LC3II, as well as between STING and ATG5, thereby regulates cGAS/STING-mediated autophagy. We also identified hundreds of genes associated several biological processes including aging are co-regulated by p66Shc and ATG5, deletion either of which results in diminished cellular senescence. CONCLUSION: p66Shc is not only implicated in the initiation of autophagy by promoting MAMs formation, but also helps stabilizing active autophagic flux by activating cGAS/STING pathway in trophoblast.


Autophagosomes , Extravillous Trophoblasts , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , Autophagosomes/metabolism , Autophagy , DNA, Mitochondrial/metabolism , Trophoblasts/metabolism , Glucose/metabolism , Nucleotidyltransferases/metabolism
11.
J Colloid Interface Sci ; 665: 1065-1078, 2024 Jul.
Article En | MEDLINE | ID: mdl-38579389

Reactive oxygen species (ROS)-centered chemodynamic therapy (CDT) holds significant potential for tumor-specific treatment. However, insufficient endogenous H2O2 and extra glutathione within tumor microenvironment (TME) severely deteriorate the CDT's effectiveness. Herein, rich-Zn-Co3O4/N-doped porous carbon (Zn-Co3O4/NC) was fabricated by two-step pyrolysis, and applied to build high-efficiency nano-platform for synergistic cancer therapy upon combination with glucose oxidase (GOx), labeled Zn-Co3O4/NC-GOx for clarity. Specifically, the multiple enzyme-like activities of the Zn-Co3O4/NC were scrutinously investigated, including peroxidase-like activity to convert H2O2 to O2∙-, catalase-like activity to decompose H2O2 into O2, and oxidase-like activity to transform O2 to O2∙-, which achieved the CDT through the catalytic cascade reaction. Simultaneously, GOx reacted with intracellular glucose to produce gluconic acid and H2O2, realizing starvation therapy. In the acidic TME, the Zn-Co3O4/NC-GOx rapidly caused intracellular Zn2+ pool overload and disrupted cellular homeostasis for ion-intervention therapy. Additionally, the Zn-Co3O4/NC exhibited glutathione peroxidase-like activity, which consumed glutathione in tumor cells and reduced the ROS consumption for ferroptosis. The tumor treatments offer some constructive insights into the nanozyme-mediated catalytic medicine, coupled by avoiding the TME limitations.


Cobalt , Hydrogen Peroxide , Neoplasms , Oxides , Humans , Porosity , Reactive Oxygen Species , Glucose Oxidase , Imidazoles , Carbon , Glutathione , Zinc , Neoplasms/drug therapy , Cell Line, Tumor , Tumor Microenvironment
12.
Environ Health Perspect ; 132(4): 47012, 2024 Apr.
Article En | MEDLINE | ID: mdl-38662525

BACKGROUND: Concurrent extreme events are projected to occur more frequently under a changing climate. Understanding the mortality risk and burden of the concurrent heatwaves and ozone (O3) pollution may support the formulation of adaptation strategies and early warning systems for concurrent events in the context of climate change. OBJECTIVES: We aimed to estimate the mortality risk and excess deaths of concurrent heatwaves and O3 pollution across 250 counties in China. METHODS: We collected daily mortality, meteorological, and air pollution data for the summer (1 June to 30 September) during 2013-2018. We defined heatwaves and high O3 pollution days, then we divided the identified days into three categories: a) days with only heatwaves (heatwave-only event), b) days with only high O3 pollution (high O3 pollution-only event), and c) days with concurrent heatwaves and high O3 pollution (concurrent event). A generalized linear model with a quasi-Poisson regression was used to estimate the risk of mortality associated with extreme events for each county. Then we conducted a random-effects meta-analysis to pool the county-specific estimates to derive the overall effect estimates. We used mixed-effects meta-regression to identify the drivers of the heterogeneity. Finally, we estimated the excess death attributable to extreme events (heatwave-only, high O3 pollution-only, and concurrent events) from 2013 to 2020. RESULTS: A higher all-cause mortality risk was associated with exposure to the concurrent heatwaves and high O3 pollution than exposure to a heatwave-only or a high O3 pollution-only event. The effects of a concurrent event on circulatory and respiratory mortality were higher than all-cause and nonaccidental mortality. Sex and age significantly impacted the association of concurrent events and heatwave-only events with all-cause mortality. We estimated that annual average excess deaths attributed to the concurrent events were 6,249 in China from 2017 to 2020, 5.7 times higher than the annual average excess deaths attributed to the concurrent events from 2013 to 2016. The annual average proportion of excess deaths attributed to the concurrent events in the total excess deaths caused by three types of events (heatwave-only events, high O3 pollution-only events, and concurrent events) increased significantly in 2017-2020 (31.50%; 95% CI: 26.73%, 35.53%) compared with 2013-2016 (9.65%; 95% CI: 5.67%, 10.81%). Relative excess risk due to interaction revealed positive additive interaction considering the concurrent effect of heatwaves and high O3 pollution. DISCUSSION: Our findings may provide scientific basis for establishing a concurrent event early warning system to reduce the adverse health impact of the concurrent heatwaves and high O3 pollution. https://doi.org/10.1289/EHP13790.


Air Pollutants , Air Pollution , Extreme Heat , Ozone , Ozone/analysis , Ozone/adverse effects , China/epidemiology , Humans , Air Pollution/adverse effects , Air Pollution/statistics & numerical data , Air Pollutants/analysis , Air Pollutants/adverse effects , Extreme Heat/adverse effects , Female , Male , Mortality , Middle Aged , Environmental Exposure/adverse effects , Environmental Exposure/statistics & numerical data , Aged , Adult , Climate Change , Adolescent , Child , Young Adult , Child, Preschool , Infant , Seasons , Hot Temperature/adverse effects
13.
Phys Chem Chem Phys ; 26(16): 12564-12572, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38595124

The ß-Ga2O3 crystal is a significant ultrawide bandgap semiconductor with great potential in ultraviolet optoelectronics and high-power devices. Planar defects in ß-Ga2O3 have been observed in experiments, but their structures, influences, formation mechanism, and controlling methods remain to be studied. We conducted a comprehensive study of ß-Ga2O3 planar defects using density functional theory. We determined the atomic structures of planar defects (stacking faults and twins) on (100), (001), and (-201) planes in ß-Ga2O3 crystals and calculated the formation energy and band structure of each defect. Our results indicate that the formation energy of stacking faults on the (100) plane and twins on the (100) and (-201) planes was extremely low, which explained why these planar defects were observed readily. We also studied the influence of common impurities (Si, Sn, Al, H) and vacancies in ß-Ga2O3 crystals on the formation of these planar defects. Our findings revealed that specific impurities and vacancies could facilitate the formation of planar defects or even make them spontaneous. This research provides critical insights into the atomic structures of planar defects in ß-Ga2O3, and explains why they form readily from the perspective of formation energy. These insights are important for future research into ß-Ga2O3 defects.

14.
Mar Pollut Bull ; 202: 116361, 2024 May.
Article En | MEDLINE | ID: mdl-38636345

A variety of machine learning (ML) models have been extensively utilized in predicting biomass pyrolysis owing to their prowess in deciphering complex non-linear relationships between inputs and outputs, but there is still a lack of consensus on the optimal methods. This study elaborates on the development, optimization, and evaluation of three ML methodologies, namely, artificial neural networks, random forest (RF), and support vector machines, aimed to determine the optimal model for accurate prediction of biomass pyrolysis behavior using thermogravimetric data. This work assesses the utility of thermal data derived from these models in the computation of kinetic and thermodynamic parameters, alongside an analysis of their statistical performance. Eventually, the RF model exhibits superior physical interpretability and the least discrepancy in predicting kinetic and thermodynamic parameters. Furthermore, a feature importance analysis conducted within the RF model framework quantitatively reveals that temperature and heating rate account for 98.5 % and 1.5 %, respectively.


Biomass , Machine Learning , Neural Networks, Computer , Pyrolysis , Thermogravimetry , Support Vector Machine , Thermodynamics
15.
Mol Phylogenet Evol ; 196: 108072, 2024 Jul.
Article En | MEDLINE | ID: mdl-38615706

While the diversity of species formation is broadly acknowledged, significant debate exists regarding the universal nature of hybrid species formation. Through an 18-year comprehensive study of all Populus species on the Qinghai-Tibet Plateau, 23 previously recorded species and 8 new species were identified. Based on morphological characteristics, these can be classified into three groups: species in section Leucoides, species with large leaves, and species with small leaves in section Tacamahaca. By conducting whole-genome re-sequencing of 150 genotypes from these 31 species, 2.28 million single nucleotide polymorphisms (SNPs) were identified. Phylogenetic analysis utilizing these SNPs not only revealed a highly intricate evolutionary network within the large-leaf species of section Tacamahaca but also confirmed that a new species, P. curviserrata, naturally hybridized with P. cathayana, P. szechuanica, and P. ciliata, resulting in 11 hybrid species. These findings indicate the widespread occurrence of hybrid species formation within this genus, with hybridization serving as a key evolutionary mechanism for Populus on the plateau. A novel hypothesis, "Hybrid Species Exterminating Their Ancestral Species (HSEAS)," is introduced to explain the mechanisms of hybrid species formation at three different scales: the entire plateau, the southeastern mountain region, and individual river valleys.


Genetic Speciation , Hybridization, Genetic , Phylogeny , Polymorphism, Single Nucleotide , Populus , Populus/genetics , Populus/classification , Tibet
16.
Angew Chem Int Ed Engl ; : e202402882, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594208

Circularly polarized luminescence (CPL)-active molecular materials have drawn increasing attention due to their promising applications for next-generation display and optoelectronic technologies. Currently, it is challenging to obtain CPL materials with both large luminescence dissymmetry factor (glum) and high quantum yield (Φ). A pair of enantiomeric N N C-type Pt(II) complexes (L/D)-1 modified with chiral Leucine methyl ester are presented herein. Though the solutions of these complexes are CPL-inactive, the spin-coated thin films of (L/D)-1 exhibit giantly-amplified circularly polarized phosphorescences with |glum| of 0.53 at 560 nm and Φair of ~50 %, as well as appealing circular dichroism (CD) signals with the maximum absorption dissymmetry factor |gabs| of 0.37-0.43 at 480 nm. This superior CPL performance benefits from the hierarchical formation of crystalline fibrillar networks upon spin coating. Comparative studies of another pair of chiral Pt(II) complexes (L/D)-2 with a symmetric N C N coordination mode suggest that the asymmetric N N C coordination of (L/D)-1 are favorable for the efficient exciton delocalization to amplify the CPL performance. Optical applications of the thin films of (L/D)-1 in CPL-contrast imaging and inducing CP light generation from achiral emitters and common light-emitting diode lamps have been successfully realized.

17.
Nat Prod Res ; : 1-7, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38684029

Zanthoxylum nitidum is frequently used as a traditional Chinese medicine and food supplement. Our previous study revealed that its constituent compounds were able to inhibit cancer cell proliferation. In our continuous exploration of bioactive compounds in Z. nitidum, we isolated ten alkaloids (1-10), including one new natural compound (1), and nine known alkaloids (2-10), from an ethanolic extract of the whole plant. The chemical structures were elucidated based on a combination of comprehensive NMR and HRESIMS analyses. Compounds 5, 8 and 10 exhibited significant antiproliferative effects against A549 cancer cell lines. We further elucidated the underlying molecular mechanisms of the antiproliferative activity of compound 8 in A549 human lung cancer cells. Compound 8 was found to induce cell cycle arrest in the G0/G1 phase via p53 activation and CDK4/6 suppression. Compound 8 also effectively inhibited cell migration through the modulation of the epithelial-mesenchymal transition (EMT), as indicated by the expression of biomarkers, such as N-cadherin downregulation and E-cadherin upregulation. Compound 8 significantly suppressed the activation of the EGFR/AKT/mTOR signalling pathway in A549 cells. These results indicate that alkaloid 8 from Z. nitidum has potential to be a lead antiproliferative compound in cancer cells.

18.
J Phys Chem Lett ; 15(17): 4721-4728, 2024 May 02.
Article En | MEDLINE | ID: mdl-38660969

Knowing heat capacity is crucial for modeling temperature changes with the absorption and release of heat and for calculating the thermal energy storage capacity of oxide mixtures with energy applications. The current prediction methods (ab initio simulations, computational thermodynamics, and the Neumann-Kopp rule) are computationally expensive, not fully generalizable, or inaccurate. Machine learning has the potential of being fast, accurate, and generalizable, but it has been scarcely used to predict mixture properties, particularly for mixed oxides. Here, we demonstrate a method for the generalizable prediction of heat capacity of solid oxide pseudobinary mixtures using heat capacity data obtained from computational thermodynamics and descriptors from ab initio databases. Models trained through this workflow achieved an error (mean absolute error of 0.43 J mol-1 K-1) lower than the uncertainty in differential scanning calorimetry measurements, and the workflow can be extended to predict other properties derived from the Gibbs free energy and for higher-order oxide mixtures.

19.
Nanoscale ; 16(17): 8369-8377, 2024 May 02.
Article En | MEDLINE | ID: mdl-38572999

As thin films of semiconducting covalent organic frameworks (COFs) are demonstrating utility for ambipolar electronics, channel materials in organic electrochemical transistors (OECTs), and broadband photodetectors, control and modulation of their thin film properties is paramount. In this work, an interfacial growth technique is utilized to synthesize imine TAPB-PDA COF films at both the liquid-liquid interface as well as at the liquid-solid interface on a Si/SiO2 substrate. The concentration of acetic acid catalyst in the aqueous phase is shown to significantly influence the thin film morphology of the liquid-solid growth, with concentrations below 1 M resulting in no film nucleation, concentrations of 1-4 M enabling smooth film formation, and concentrations greater than 4 M resulting in films with a higher density of particulates on the surface. Importantly, while the films grown at the liquid-liquid interface are mixed-orientation, those grown directly at the liquid-solid interface on the Si/SiO2 surface have highly oriented COF layers aligned parallel to the substrate surface. Moreover, this liquid-solid growth process affords TAPB-PDA COF thin films with p-type charge transport having a transconductance of 10 µS at a gate voltage of -0.9 V in an OECT device structure.

20.
Chemistry ; 30(28): e202400685, 2024 May 17.
Article En | MEDLINE | ID: mdl-38469986

Recently, chiral metal-organic coordination materials have emerged as promising candidates for a wide range of applications in chiroptoelectronics, chiral catalysis, and information encryption, etc. Notably, the chiroptical effect of coordination chromophores makes them appealing for applications such as photodetectors, OLEDs, 3D displays, and bioimaging. The direct synthesis of chiral coordination materials using chiral organic ligands or complexes with metal-centered chirality is very often tedious and costly. In the case of ionic coordination materials, the combination of chiral anions with cationic, achiral coordination compounds through noncovalent interactions may endow molecular materials with desirable chiroptical properties. The use of such a simple chiral strategy has been proven effective in inducing promising circular dichroism and/or circularly polarized luminescence signals. This concept article mainly delves into the latest advances in exploring the efficacy of such a chiral anion strategy for transforming achiral coordination materials into chromophores with superb photo- or electro-chiroptical properties. In particular, ionic small-molecular metal complexes, metal clusters, coordination supramolecular assemblies, and metal-organic frameworks containing chiral anions are discussed. A perspective on the future opportunities on the preparation of chiroptical materials with the chiral anion strategy is also presented.

...