Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Asian J ; : e202400987, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39226114

RESUMEN

We here report the multicolor electrochemiluminescence (ECL) of binary microcrystals prepared from a blue-emissive iridium complex 1 and an orange-emissive ruthenium complex 2. These materials display a plate-like morphology with high crystallinity, as demonstrated by microscopic and powder X-ray diffraction analyses. Under light excitation, these microcrystals exhibit gradient emission color changes as a result of the efficient energy transfer between two complexes. When modified on glass carbon electrodes, these microcrystals exhibit tunable ECLs with varied emission colors including sky-blue, white, orange, and red, depending the doping ratio of complex 2 and the applied potential. Furthermore, organic amines with different molecular sizes are used as the co-reactant to examine their influences on the ECL efficiency of the porous microcrystals of 1. The analysis on the luminance and RGB values of ECL suggests the existence of energy transfer in the generation of multicolor ECLs in these binary crystals.

2.
Inorg Chem ; 63(39): 17983-17992, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39287976

RESUMEN

Two dual fluorescent/phosphorescent tris-heteroleptic mononuclear Ru(ΙΙ) complexes (2 and 3) were designed and applied in amyloid-ß (Aß) sensing. These complexes have a general formula of [Ru(phen)(dppz)(L)](PF6)2, where L is (2-pyrazinyl)(2-pyridyl)(methyl)amine (H-L) with different substituents (-OMe for 2, -H for 3), phen is 1,10-phenanthroline, and dppz is dipyridophenazine, respectively. Compared with the previously reported ratiometric probe 1 with a di(pyrid-2-yl)(methyl)amine ligand, complex 2 can be employed for not only ratiometric emissive detection of Aß aggregation but also ratiometric imaging detection of Aß fibrils. In ratiometric emissive detection, as the incubation time of the Aß sample (Aß40 and Aß42) was prolonged, a new phosphorescence emission band appeared with gradual enhancement of the emission intensity, while the fluorescence emission was basically unchanged, which could be treated as an intrinsic internal reference signal. In comparison, a larger ratiometric photoluminescence enhancement (I640/I440) was observed for Aß40 aggregation with respect to Aß42. In ratiometric imaging detection, the imaging signals obtained from the phosphorescence emission are much brighter than the fluorescence emission in both Aß40 and Aß42 fibrils. As indicated by molecular docking results, stronger interactions were found between complex 2 with Aß40 fibrils, which included π/π, π/C-H, and π/H interactions between bidentate ligands dppz and phen with amino acid residues. Moreover, computational calculations were carried out to assist the interpretation of these experimental findings.


Asunto(s)
Péptidos beta-Amiloides , Complejos de Coordinación , Rutenio , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/análisis , Rutenio/química , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Humanos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Estructura Molecular , Simulación del Acoplamiento Molecular , Imagen Óptica , Fragmentos de Péptidos/química , Fragmentos de Péptidos/análisis
3.
ACS Appl Mater Interfaces ; 16(37): 49594-49601, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39230599

RESUMEN

Covalent organic framework (COF) film with electrofluorochromic (EFC) and electrochromic (EC) properties has been synthesized by using triphenylamine-based monomers. The film exhibited a high maximum fluorescence contrast of 151 when subjected to a drive voltage of 0.75 V vs the Ag/AgCl electrode, causing the fluorescence to be quenched, which resulted in the EFC process's "fluorescence off" state. The switching times for the fluorescence on and off states were 0.51 and 7.79 s, respectively. Over the same voltage range, the COF film also displayed EC properties, achieving a contrast of 50.23% and a coloration efficiency of 297.4 cm2 C-1 at 532 nm, with switching times of 18.6 s for coloration and 0.7 s for bleaching. Notably, the quenched fluorescence of the COF film could be restored by adding dopamine as a reductant. This phenomenon enabled the implementation of a NAND logic gate using the applied potential as a physical input and dopamine addition as a chemical input. This study demonstrates the successful development of COF films with bifunctional EFC and EC properties, showcasing their potential for use in constructing advanced optoelectronic devices.

4.
Mater Horiz ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39315763

RESUMEN

Circularly polarized phosphorescent (CPP) materials, especially chiral platinum(II) complexes, which combine the advantages of both circularly polarized luminescence (CPL) and phosphorescence, show broad potential applications in chiral optoelectronic devices. Developing CPP emitters with both excellent chiroptical properties and high yield is urgently needed. Here, a chiral cation strategy is employed to construct the CPP Pt(II) complexes R/S-ABA·[Pt(ppy)Cl2] and R/S-MBA·[Pt(ppy)Cl2] through a simple one-step reaction with almost 100% yield. The circular dichroism and CPL spectra confirm that the chirality was successfully transferred to the [Pt(ppy)Cl2]- anion. The luminescence asymmetry factors (glum) are +1.4/-1.8 × 10-3 for R/S-ABA·[Pt(ppy)Cl2] and +4.4/-2.8 × 10-3 for R/S-MBA·[Pt(ppy)Cl2]. The stronger chiroptical property of R/S-MBA·[Pt(ppy)Cl2] is attributed to the enhanced chiral structural deformation and better matched electric and magnetic transition dipole moments. This chiral cation strategy is confirmed to efficiently construct CPP Pt(II) complexes, which will accelerate the development of CPP emitters towards commercialization.

5.
Angew Chem Int Ed Engl ; : e202414118, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160140

RESUMEN

Trap-assisted non-radiative recombination losses and moisture-induced degradation significantly impede the development of highly efficient and stable inverted (p-i-n) perovskite solar cells (PSCs), which require high-quality perovskite bulk. In this research, we mitigate these challenges by integrating thermally stable perovskite layers with Lewis base covalent organic frameworks (COFs). The ordered pore structure and surface binding groups of COFs facilitate cyclic, multi-site chelation with undercoordinated lead ions, enhancing the perovskite quality across both its bulk and grain boundaries. This process not only reduces defects but also promotes improved energy alignment through n-type doping at the surface. The inclusion of COF dopants in p-i-n devices achieves power conversion efficiencies (PCEs) of 25.64% (certified 24.94%) for a 0.0748-cm2 device and 23.49% for a 1-cm2 device. Remarkably, these devices retain 81% of their initial PCE after 978 hours of accelerated aging at 85˚C, demonstrating remarkable durability. Additionally, COF-doped devices demonstrate excellent stability under illumination and in moist conditions, even without encapsulation.

6.
Angew Chem Int Ed Engl ; : e202412651, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39030810

RESUMEN

Photonic heterostructures with codable properties have shown great values as versatile information carriers at the micro and nanoscale. These heterostructures are typically prepared by a step-by-step growth or post-functionalization method to achieve varied emission colors among different building blocks. In order to realize high-throughput and multivariate information loading, we report here a strategy to integrate polarization signals into photonic heterojunctions. A U-shaped di-Pt(II) complex is assembled into highly-polarized yellow-phosphorescent crystalline microrods (Y-rod) by strong intermolecular Pt···Pt interaction. Upon end-initiated desorption of the incorporated CH2Cl2 solvents, Y-rod is transformed in a domino fashion into tri-block polarized photonic heterojunctions (PPHs) with alternate red-yellow-red emissions or red-phosphorescent microrods (R-rod). The red emissions of these structures are also highly polarized; however, their polarization directions are just orthogonal to those of the yellow phosphorescence of Y-rod. With the aid of a patterned mask, R-rod is further programmed into multi-block PPHs with precisely-controlled block sizes by side-allowed adsorption of CH2Cl2 vapor. X-ray diffraction analysis and theoretical calculations suggest that the solvent-regulated modulation of intramolecular and intermolecular excited states is critical for the construction of these PPHs.

7.
Angew Chem Int Ed Engl ; 63(36): e202405520, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38896428

RESUMEN

Functionalization of Si-bound methyl group provides an efficient access to diverse organosilanes. However, the asymmetric construction of silicon-stereogenic architectures by functionalization of Si-bound methyl group has not yet been described despite recent significant progress in producing chiral silicon. Herein, we disclosed the enantioselective silylmethyl functionalization involving the aryl to alkyl 1,5-palladium migration to access diverse naphthalenes possessing an enantioenriched stereogenic silicon center, which are inaccessible before. It is worthy to note that the realization of asymmetric induction at the step of metal migration itself remains challenging. Our study constitutes the first enantioselective aryl to alkyl 1,5-palladium migration reaction. The key to the success is the discovery and fine-tuning of the different substituents of α,α,α,α-tetraaryl-1,3-dioxolane-4,5-dimethanol (TADDOL)-based phosphoramidites, which ensure the enantioselectivity and desired reactivity.

8.
Nat Commun ; 15(1): 4402, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782924

RESUMEN

Endowing the widely-used synthetic polymer nylon with high-performance organic room-temperature phosphorescence would produce advanced materials with a great potential for applications in daily life and industry. One key to achieving this goal is to find a suitable organic luminophore that can access the triplet excited state with the aid of the nylon matrix by controlling the matrix-luminophore interaction. Herein we report highly-efficient room-temperature phosphorescence nylons by doping cyano-substituted benzimidazole derivatives into the nylon 6 matrix. These homogeneously doped materials show ultralong phosphorescence lifetimes of up to 1.5 s and high phosphorescence quantum efficiency of up to 48.3% at the same time. The synergistic effect of the homogeneous dopant distribution via hydrogen bonding interaction, the rigid environment of the matrix polymer, and the potential energy transfer between doped luminophores and nylon is important for achieving the high-performance room-temperature phosphorescence, as supported by combined experimental and theoretical results with control compounds and various polymeric matrices. One-dimensional optical fibers are prepared from these doped room-temperature phosphorescence nylons that can transport both blue fluorescent and green afterglow photonic signals across the millimeter distance without significant optical attenuation. The potential applications of these phosphorescent materials in dual information encryption and rewritable recording are illustrated.

9.
Angew Chem Int Ed Engl ; 63(25): e202402882, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38594208

RESUMEN

Circularly polarized luminescence (CPL)-active molecular materials have drawn increasing attention due to their promising applications for next-generation display and optoelectronic technologies. Currently, it is challenging to obtain CPL materials with both large luminescence dissymmetry factor (glum) and high quantum yield (Φ). A pair of enantiomeric N N C-type Pt(II) complexes (L/D)-1 modified with chiral Leucine methyl ester are presented herein. Though the solutions of these complexes are CPL-inactive, the spin-coated thin films of (L/D)-1 exhibit giantly-amplified circularly polarized phosphorescences with |glum| of 0.53 at 560 nm and Φair of ~50 %, as well as appealing circular dichroism (CD) signals with the maximum absorption dissymmetry factor |gabs| of 0.37-0.43 at 480 nm. This superior CPL performance benefits from the hierarchical formation of crystalline fibrillar networks upon spin coating. Comparative studies of another pair of chiral Pt(II) complexes (L/D)-2 with a symmetric N C N coordination mode suggest that the asymmetric N N C coordination of (L/D)-1 are favorable for the efficient exciton delocalization to amplify the CPL performance. Optical applications of the thin films of (L/D)-1 in CPL-contrast imaging and inducing CP light generation from achiral emitters and common light-emitting diode lamps have been successfully realized.

10.
Chemistry ; 30(28): e202400685, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38469986

RESUMEN

Recently, chiral metal-organic coordination materials have emerged as promising candidates for a wide range of applications in chiroptoelectronics, chiral catalysis, and information encryption, etc. Notably, the chiroptical effect of coordination chromophores makes them appealing for applications such as photodetectors, OLEDs, 3D displays, and bioimaging. The direct synthesis of chiral coordination materials using chiral organic ligands or complexes with metal-centered chirality is very often tedious and costly. In the case of ionic coordination materials, the combination of chiral anions with cationic, achiral coordination compounds through noncovalent interactions may endow molecular materials with desirable chiroptical properties. The use of such a simple chiral strategy has been proven effective in inducing promising circular dichroism and/or circularly polarized luminescence signals. This concept article mainly delves into the latest advances in exploring the efficacy of such a chiral anion strategy for transforming achiral coordination materials into chromophores with superb photo- or electro-chiroptical properties. In particular, ionic small-molecular metal complexes, metal clusters, coordination supramolecular assemblies, and metal-organic frameworks containing chiral anions are discussed. A perspective on the future opportunities on the preparation of chiroptical materials with the chiral anion strategy is also presented.

11.
Langmuir ; 40(12): 6244-6252, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38482812

RESUMEN

A dye-sensitized photoanode is prepared by coassembling a Ru complex photosensitizer and a Ru water oxidation catalyst (WOC) on a TiO2 substrate, in which the WOC molecules are immobilized in a layer-by-layer fashion through metal-pyridine coordination with the aid of a bifunctional anchoring and bridging molecule containing multiple pyridine groups. Under visible-light irradiation, an anodic photocurrent of around 200 µA/cm2 has been achieved with O2 and H2 being generated at the photoanode and Pt counter electrode, respectively. The pyridine anchoring strategy provides a simple method to prepare photoelectrodes for applications in photoelectrochemical cells.

12.
Nature ; 626(8000): 772-778, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38383625

RESUMEN

High-capacity storage technologies are needed to meet our ever-growing data demands1,2. However, data centres based on major storage technologies such as semiconductor flash devices and hard disk drives have high energy burdens, high operation costs and short lifespans2,3. Optical data storage (ODS) presents a promising solution for cost-effective long-term archival data storage. Nonetheless, ODS has been limited by its low capacity and the challenge of increasing its areal density4,5. Here, to address these issues, we increase the capacity of ODS to the petabit level by extending the planar recording architecture to three dimensions with hundreds of layers, meanwhile breaking the optical diffraction limit barrier of the recorded spots. We develop an optical recording medium based on a photoresist film doped with aggregation-induced emission dye, which can be optically stimulated by femtosecond laser beams. This film is highly transparent and uniform, and the aggregation-induced emission phenomenon provides the storage mechanism. It can also be inhibited by another deactivating beam, resulting in a recording spot with a super-resolution scale. This technology makes it possible to achieve exabit-level storage by stacking nanoscale disks into arrays, which is essential in big data centres with limited space.

13.
Materials (Basel) ; 16(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37895773

RESUMEN

Three monoruthenium complexes 1(PF6)2-3(PF6)2 bearing an N(CH3)-bridged ligand have been synthesized and characterized. These complexes have a general formula of [Ru(bpy)2(L)](PF6)2, where L is a 2,5-di(N-methyl-N'-(pyrid-2-yl)amino)pyrazine (dapz) derivative with various substituents, and bpy is 2,2'-bipyridine. The photophysical and electrochemical properties of these compounds have been examined. The solid-state structure of complex 3(PF6)2 is studied by single-crystal X-ray analysis. These complexes show two well-separated emission bands centered at 451 and 646 nm (Δλmax = 195 nm) for 1(PF6)2, 465 and 627 nm (Δλmax = 162 nm) for 2(PF6)2, and 455 and 608 nm (Δλmax = 153 nm) for 3(PF6)2 in dilute acetonitrile solution, respectively. The emission maxima of the higher-energy emission bands of these complexes are similar, while the lower-energy emission bands are dependent on the electronic nature of substituents. These complexes display two consecutive redox couples owing to the stepwise oxidation of the N(CH3)-bridged ligand and ruthenium component. Moreover, these experimental observations are analyzed by computational investigation.

14.
Chemistry ; 29(72): e202302663, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-37782056

RESUMEN

The development of efficient photocathodes is of critical importance for the constructions of promising tandem photo-electrochemical cells. Most known dye-sensitized photocathodes are prepared with the conventional carboxylic or phosphonic acid anchors and require the presence of other terminal linking groups to connect catalysts; they suffer from high synthetic difficulty and low adsorption stability in aqueous media. Here, a compact bilayer photocathode has been prepared by using a pyrene-based photosensitizer with multiple terminal pyridine moieties as both the anchoring and linking groups to connect a Co hydrogen-evolution catalyst to the NiO substrate. The catalyst and dye molecule are assembled in a layer-by-layer manner on NiO through the metal-pyridine coordination. This photocathode exhibits good dye adsorption stability in aqueous media. A stable cathodic photocurrent of 70 µA cm-2 was achieved, with H2 being generated at the photocathode under the visible-light irradiation. The Faraday efficiency of H2 evolution was estimated to be 9.1 %. Transient absorption spectral studies suggest that the interfacial hole transfer occurs within a few picoseconds. The integration of the organic photosensitizer with pyridine anchoring and linking groups is expected to provide a simple method for the fabrication of stable and efficient photocathodes.

15.
Chem Commun (Camb) ; 59(40): 6072-6075, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37114732

RESUMEN

TiO2 photoelectrodes modified with organic dyes with pyridine anchoring groups are prepared, which are used as photoanodes of dye-sensitized photoelectrochemical cells for efficient water reduction with high photocurrent density and stability in aqueous solutions. Vigorous H2 generation with a production rate of around 250 µmol h-1 is realized with a photoanode of an active area of 5 × 5 cm2.

16.
Angew Chem Int Ed Engl ; 62(20): e202302160, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-36929027

RESUMEN

The development of circularly polarized electroluminescence (CPEL) is currently hampered by the high difficulty and cost in the syntheses of suitable chiral materials and the notorious chirality diminishment issue in electrical devices. Herein, diastereomeric IrIII and RuII complexes with chiral (±)-camphorsulfonate counteranions are readily synthesized and used as the active materials in circularly polarized light-emitting electrochemical cells to generate promising CPELs. The addition of the chiral ionic liquid (±)-1-butyl-3-methylimidazole camphorsulfonate into the active layer significantly improves the device performance and the electroluminescence dissymmetry factors (≈10-3 ), in stark contrast to the very weak circularly polarized photoluminescence of the spin-coated films of these diastereomeric complexes. Control experiments with enantiopure IrIII complexes suggest that the chiral anions play a dominant role in the electrically-induced amplification of CPELs.

17.
Chem Sci ; 13(46): 13907-13913, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36544745

RESUMEN

Singlet fission (SF) has drawn tremendous attention as a multiexciton generation process that could mitigate the thermal loss and boost the efficiency of solar energy conversion. Although a SF-based solar cell with an EQE above 100% has already been fabricated successfully, the practical efficiency of the corresponding devices is plagued by the limited scope of SF materials. Therefore, it is of great importance to design and develop new SF-capable compounds aiming at practical device application. In the current contribution, via a π-expanded strategy, we presented a new series of robust SF chromophores based on polycyclic DPP derivatives, Ex-DPPs. Compared to conventional DPP molecules, Ex-DPPs feature strong absorption with a fivefold extinction coefficient, good molecular rigidity to effectively restrain non-radiative deactivation, and an expanded π-skeleton which endow them with well-suited intermolecular packing geometries for achieving efficient SF process. These results not only provide a new type of high-efficiency SF chromophore but also address some basic guidelines for the design of potential SF materials targeting practical light harvesting applications.

18.
Materials (Basel) ; 15(20)2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36295313

RESUMEN

Crystalline materials with appealing luminescent properties are attractive materials for various optoelectronic applications. The in situ bicomponent reaction of 1,2-ethylenedisulfonic acid with 1,4-di(pyrid-2-yl)benzene, 1,4-di(pyrid-3-yl)benzene, or 1,4-di(pyrid-4-yl)benzene affords luminescent crystals with hydrogen-bonded polymeric structures. Variations in the positions of the pyridine nitrogen atoms lead to alternating polymeric structures with either a ladder- or zigzag-type of molecular arrangement. By using a nanoprecipitation method, microcrystals of these polymeric structures are prepared, showing polarized luminescence with a moderate degree of polarization.

19.
Angew Chem Int Ed Engl ; 61(33): e202205033, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35604407

RESUMEN

Nano- and micromaterials with anisotropic photoluminescence and photon transport have widespread application prospects in quantum optics, optoelectronics, and displays. But the nature of the polarization information of the out-coupled light, with respect to that of the source luminescence, has never been explored in active optical-waveguiding organic crystals. Herein, three different modes (selective, anisotropic, and consistent) of polarized-photon out-coupling are proposed and successfully implemented in a set of 2D organic microcrystals with highly linearly-polarized luminescence. It is found that the polarization direction and degree of the luminescence out-coupled through different waveguiding channels can either be essentially retained or distinctly changed with respect to those of the original luminescence, depending on the molecular arrangement and the orientation of transition dipole moments of the crystal. This work demonstrates the promising potential of 2D emissive microcrystals in multi-channel polarized photon transport.

20.
Angew Chem Int Ed Engl ; 61(11): e202116603, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35020259

RESUMEN

Conventional square-planar platinum complexes typically form one-dimensional assemblies as a result of unidirectional metallophilic and/or π⋅⋅⋅π intermolecular interactions. Organoplatinum(II) complexes with a cruciform shape are presented herein to construct two-dimensional (2D) microcrystals with full-color and white phosphorescence. These 2D crystals show unique monocomponent π⋅⋅⋅π stacking, from either the cyclometalating or noncyclometalating ligand, and the bicomponent alternate π⋅⋅⋅π stacking from both ligands along different facet directions. Anisotropic tri-directional waveguiding is further implemented on a single hexagonal microcrystal. These results demonstrate the great capability of the organoplatinum(II) cruciform as a general platform to fabricate 2D phosphorescent micro-/nanocrystals for advanced photonic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA