Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Front Mol Neurosci ; 16: 1279237, 2023.
Article En | MEDLINE | ID: mdl-37953876

The CXCR2 chemokine receptor is known to have a significant impact on the initiation and control of inflammatory processes. However, its specific involvement in the sensation of itch is not yet fully understood. In this study, we aimed to elucidate the function of CXCR2 in the trigeminal ganglion (TG) by utilizing orofacial itch models induced by incision, chloroquine (CQ), and histamine. Our results revealed a significant up-regulation of CXCR2 mRNA and protein expressions in the primary sensory neurons of TG in response to itch stimuli. The CXCR2 inhibitor SB225002 resulted in notable decrease in CXCR2 protein expression and reduction in scratch behaviors. Distal infraorbital nerve (DION) microinjection of a specific shRNA virus inhibited CXCR2 expression in TG neurons and reversed itch behaviors. Additionally, the administration of the PI3K inhibitor LY294002 resulted in a decrease in the expressions of p-Akt, Akt, and CXCR2 in TG neurons, thereby mitigating pruritic behaviors. Collectively, we report that CXCR2 in the primary sensory neurons of trigeminal ganglion contributes to orofacial itch through the PI3K/Akt signaling pathway. These observations highlight the potential of molecules involved in the regulation of CXCR2 as viable therapeutic targets for the treatment of itch.

2.
Neurotherapeutics ; 19(4): 1401-1413, 2022 07.
Article En | MEDLINE | ID: mdl-35764763

The motor protein Eg5, known as kif11 or kinesin-5, interacts with adjacent microtubules in the mitotic spindle and plays essential roles in cell division, yet the function of Eg5 in mature postmitotic neurons remains largely unknown. In this study, we investigated the contribution and molecular mechanism of Eg5 in pathological pain. Pharmacological inhibition of Eg5 and a specific shRNA-expressing viral vector reversed complete Freund's adjuvant (CFA)-induced pain and abrogated vanilloid receptor subtype 1 (VR1) expression in dorsal root ganglion (DRG) neurons. In the dorsal root, Eg5 inhibition promoted VR1 axonal transport and decreased VR1 expression. In the spinal cord, Eg5 inhibition suppressed VR1 expression in axon terminals and impaired synapse formation in superficial laminae I/II. Finally, we showed that Eg5 is necessary for PI3K/Akt signalling-mediated VR1 membrane trafficking and pathological pain. The present study provides compelling evidence of a noncanonical function of Eg5 in primary sensory neurons. These results suggest that Eg5 may be a potential therapeutic target for intractable pain.


Kinesins , Proto-Oncogene Proteins c-akt , Down-Regulation , Freund's Adjuvant/toxicity , Ganglia, Spinal/metabolism , Kinesins/genetics , Pain/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering/genetics , Sensory Receptor Cells/metabolism , Animals
3.
Neurochem Res ; 47(12): 3635-3646, 2022 Dec.
Article En | MEDLINE | ID: mdl-35522367

Satellite glial cells (SGCs) tightly surround neurons and modulate sensory transmission in dorsal root ganglion (DRG). At present, the biological property of primary SGCs in culture deserves further investigation. To reveal the key factor for SGCs growth and survival, we examined the effects of different culture supplementations containing Dulbecco's Modified Eagle Medium (DMEM)/F12, DMEM high glucose (HG) or Neurobasal-A (NB). CCK-8 proliferation assay showed an increased proliferation of SGCs in DMEM/F12 and DMEM/HG, but not in NB medium. Bax, AnnexinV, and propidium iodide (PI) staining results showed that NB medium caused cell death and apoptosis. We showed that glutamine was over 2.5 mM in DMEM/F12 and DMEM/HG, whereas it was absence in NB medium. Interestingly, exogenous glutamine application significantly reversed the poor proliferation and cell death of SGCs in NB medium. These findings demonstrated that DMEM/F12 medium was optimal to get high-purity SGCs. Glutamine was the key molecule to maintain SGCs growth and survival in culture. Here, we provided a novel approach to get high-purity SGCs by changing the key component of culture medium. Our study shed a new light on understanding the biological property and modulation of glial cells of primary sensory ganglia.


Glutamine , Neuroglia , Glutamine/pharmacology , Glutamine/metabolism , Neuroglia/metabolism , Neurons , Ganglia, Spinal , Apoptosis
...