Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.597
1.
Front Plant Sci ; 15: 1331698, 2024.
Article En | MEDLINE | ID: mdl-38756963

Wax gourd wilt is a devastating fungal disease caused by a specialized form of Fusarium oxysporum Schl. f. sp. benincasae (FOB), which severely restricts the development of the wax gourd industry. Resistant rootstock pumpkin grafting is often used to prevent and control wax gourd wilt. The "Haizhan 1" pumpkin has the characteristic of high resistance to wilt, but the mechanism through which grafted pumpkin rootstock plants acquire resistance to wax gourd wilt is still poorly understood. In this study, grafted wax gourd (GW) and self-grafted wax gourd (SW) were cultured at three concentrations [2.8 × 106 Colony Forming Units (CFU)·g-1, 8.0 × 105 CFU·g-1, and 4.0 × 105 CFU·g-1, expressed by H, M, and L]. Three culture times (6 dpi, 10 dpi, and 13 dpi) were used to observe the incidence of wilt disease in the wax gourd and the number of F. oxysporum spores in different parts of the soil and plants. Moreover, the physiological indices of the roots of plants at 5 dpi, 9 dpi, and 12 dpi in soil supplemented with M (8.0 × 105 CFU·g-1) were determined. No wilt symptoms in GW. Wilt symptoms in SW were exacerbated by the amount of FOB in the inoculated soil and culture time. At any culture time, the amount of FOB in the GW soil under the three treatments was greater than that in the roots. However, for the SW treatments, at 10 dpi and 13 dpi, the amount of FOB in the soil was lower than that in the roots. The total phenol (TP) and lignin (LIG) contents and polyphenol oxidase (PPO) and chitinase (CHI) activities were significantly increased in the GWM roots. The activities of phenylalanine ammonia lyase (PAL) and peroxidase (POD) initially decreased but then increased in the GWM roots. When the TP content decreased significantly, the LIG content and PAL and CHI activities increased initially but then decreased, whereas the PPO and POD activities did not change significantly in the SWM roots. The results indicated that the roots of the "Haizhan 1" pumpkin stock plants initiated a self-defense response after being infected with FOB, and the activities of PPO, POD, PAL, and CHI increased, and additional LIG and TP accumulated, which could effectively prevent FOB infection.

2.
Sci Total Environ ; 931: 172924, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38697550

The water quality in the drinking water reservoir directly affects people's quality of life and health. When external pollution input is effectively controlled, endogenous release is considered the main cause of water quality deterioration. As the major nitrogen (N) and phosphorus (P) sources in reservoirs, sediment plays a vital role in affecting the water quality. To understand the spatial and temporal variation of N and P in the sediment, this study analyzed the current characteristics and cumulative effects of a semi-humid reservoir, Yuqiao Reservoir, in North China. The N and P concentrations in the reservoir sediment were decreased along the flow direction, while the minimum values were recorded at the central sediment profile. External input and algal deposition were the main factors leading to higher sediment concentrations in the east (Re-E) and west (Re-W) areas of reservoir sediment profiles. According to the long-term datasets, the peaks of both sediment total nitrogen content and deposition rate were observed in the 2010s, which has increased about three times and six times than in the1990s, respectively. Therefore, the increase in phosphorus concentration may be the main reason for eutrophication in water in recent years. The mineralization of organic matter has a significant promoting effect on releasing N and P from sediments, which will intensify eutrophication in water dominated by P and bring huge challenges to water environment management. This study highlights that the current imbalance in N and P inputs into reservoirs and the endogenous P release from sediment will have a significant impact on water quality.

3.
J Hazard Mater ; 472: 134539, 2024 May 04.
Article En | MEDLINE | ID: mdl-38718516

This study presents a comprehensive approach to estimating annual atrazine residues in China's agricultural soils, integrating machine learning algorithms and mechanism-based models. First, machine learning was used to predict essential parameters influencing atrazine's adsorption, degradation, and dispersivity of solute transport. The results demonstrated that soil organic matter was the most important input variable for predicting adsorption and degradation; clay content was the primary variable for predicting dispersivity. The SHapley Additive exPlanations (SHAP) contribution of various soil properties on target variables were also analyzed to reveal whether each input variable has a positive, negative, or complex effect. Subsequently, these parameters inform the construction of a detailed model across 23,692 subregions of China, with a 20 km × 20 km resolution. The model considered regional variations and soil layer heterogeneity, including rainfall, soil depth-specific properties, and parameters for adsorption, degradation, and dispersivity. Utilizing the convection-dispersion equations and the Phydrus, the model simulated atrazine's transport and degradation patterns across diverse soil environments after applying 250 mL of atrazine (40%) per Chinese mu. The outcomes provided a spatially explicit distribution of atrazine residues, specifying that the arid areas have the highest residual risk, followed by the Northeast, Southwest, and Southeast. Atrazine levels may exceed national drinking water standards at 50 cm depth in Inner Mongolia, the Qinghai-Tibet Plateau, and the Jungar Basin. This study's integrative approach may also offer valuable insights and tools for evaluating residues of various pesticides and herbicides in agricultural soils.

4.
Protein Cell ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38721703

The maintenance of hematopoietic stem cells (HSCs) is a complex process involving numerous cell-extrinsic and -intrinsic regulators. The first member of the cyclin-dependent kinase family of inhibitors to be identified, p21, has been reported to perform a wide range of critical biological functions, including cell cycle regulation, transcription, differentiation, and so on. Given the previous inconsistent results regarding the functions of p21 in HSCs in a p21-knockout mouse model, we employed p21-tdTomato (tdT) mice to further elucidate its role in HSCs during homeostasis. The results showed that p21-tdT+ HSCs exhibited increased self-renewal capacity compared to p21-tdT- HSCs. Zbtb18, a transcriptional repressor, was upregulated in p21-tdT+ HSCs, and its knockdown significantly impaired the reconstitution capability of HSCs. Furthermore, p21 interacted with ZBTB18 to co-repress the expression of cKit in HSCs and thus regulated the self-renewal of HSCs. Our data provide novel insights into the physiological role and mechanisms of p21 in HSCs during homeostasis independent of its conventional role as a cell cycle inhibitor.

5.
ACS Infect Dis ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38728322

SARS-CoV-2 spike (S) proteins undergo extensive glycosylation, aiding in proper folding, enhancing stability, and evading host immune surveillance. In this study, we used mass spectrometric analysis to elucidate the N-glycosylation characteristics and disulfide bonding of recombinant spike proteins derived from the SARS-CoV-2 Omicron variant (B.1.1.529) in comparison with the D614G spike variant. Furthermore, we conducted microsecond-long molecular dynamics simulations on spike proteins to resolve how the different N-glycans impact spike conformational sampling in the two variants. Our findings reveal that the Omicron spike protein maintains an overall resemblance to the D614G spike variant in terms of site-specific glycan processing and disulfide bond formation. Nonetheless, alterations in glycans were observed at certain N-glycosylation sites. These changes, in synergy with mutations within the Omicron spike protein, result in increased surface accessibility of the macromolecule, including the ectodomain, receptor-binding domain, and N-terminal domain. Additionally, mutagenesis and pull-down assays reveal the role of glycosylation of a specific sequon (N149); furthermore, the correlation of MD simulation and HDX-MS identified several high-dynamic areas of the spike proteins. These insights contribute to our understanding of the interplay between structure and function, thereby advancing effective vaccination and therapeutic strategies.

6.
Nat Commun ; 15(1): 3893, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719799

Maintaining food safety and quality is critical for public health and food security. Conventional food preservation methods, such as pasteurization and dehydration, often change the overall organoleptic quality of the food products. Herein, we demonstrate a method that affects only a thin surface layer of the food, using beef as a model. In this method, Joule heating is generated by applying high electric power to a carbon substrate in <1 s, which causes a transient increase of the substrate temperature to > ~2000 K. The beef surface in direct contact with the heating substrate is subjected to ultra-high temperature flash heating, leading to the formation of a microbe-inactivated, dehydrated layer of ~100 µm in thickness. Aerobic mesophilic bacteria, Enterobacteriaceae, yeast and mold on the treated samples are inactivated to a level below the detection limit and remained low during room temperature storage of 5 days. Meanwhile, the product quality, including visual appearance, texture, and nutrient level of the beef, remains mostly unchanged. In contrast, microorganisms grow rapidly on the untreated control samples, along with a rapid deterioration of the meat quality. This method might serve as a promising preservation technology for securing food safety and quality.


Food Microbiology , Food Preservation , Animals , Cattle , Food Preservation/methods , Food Microbiology/methods , Meat/microbiology , Hot Temperature , Red Meat/microbiology , Heating , Food Safety/methods
7.
Sci Total Environ ; : 173438, 2024 May 21.
Article En | MEDLINE | ID: mdl-38782270

Seagrass meadows are one of the most important coastal ecosystems that provide essential ecological and economic services. The contamination levels of antibiotic and antibiotic resistance genes (ARGs) in coastal ecosystems are severely elevated owing to anthropogenic disturbances, such as terrestrial input, aquaculture effluent, and sewage discharge. However, few studies have focused on the occurrence and distribution of antibiotics and their corresponding ARGs in this habitat. Thus, we investigated the antibiotic and ARGs profiles, microbial communities, and ARG-carrying host bacteria in typical seagrass meadow sediments collected from Swan Lake, Caofeidian shoal harbor, Qingdao Bay, and Sishili Bay in the Bohai Sea and northern Yellow Sea. The total concentrations of 30 detected antibiotics ranged from 99.35 to 478.02 µg/kg, tetracyclines were more prevalent than other antibiotics. Metagenomic analyses showed that 342 ARG subtypes associated with 22 ARG types were identified in the seagrass meadow sediments. Multidrug resistance genes and RanA were the most dominant ARG types and subtypes, respectively. Co-occurrence network analysis revealed that Halioglobus, Zeaxanthinibacter, and Aureitalea may be potential hosts at the genus level, and the relative abundances of these bacteria were higher in Sishili Bay than those in other areas. This study provided important insights into the pollution status of antibiotics and ARGs in typical seagrass meadow sediments. Effective management should be performed to control the potential ecological health risks in seagrass meadow ecosystems.

8.
medRxiv ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38766117

We investigated the impact of COVID-19 restrictions on the duration of untreated psychosis (DUP). First-episode psychosis admissions (n=101) to STEP Clinic in Connecticut showed DUP reduction (p=.0015) in the pandemic, with the median reducing from 208 days during the pre-pandemic to 56 days in the early pandemic period and subsequently increasing to 154 days (p=.0281). Time from psychosis onset to anti-psychotic prescription decreased significantly in the pandemic (p=.0183), with the median falling from 117 to 35 days. This cohort study demonstrates an association between greater pandemic restrictions and marked DUP reduction and provides insights for future early detection efforts.

9.
Small ; : e2401213, 2024 May 20.
Article En | MEDLINE | ID: mdl-38766921

Bismuth vanadate (BiVO4) exhibits large absorption efficiency for hard X-rays, which endows it with a robust capacity to attenuate X-ray radiation across a broad energy range. The anisotropic properties of BiVO4 allow for the manipulation of their physical and chemical characteristics through crystallographic orientation and exposed facets. In this study, the issue of heavy recombination caused by sluggish electron transport in BiVO4 is successfully addressed by enhancing the abundance of the (040) crystal face ratio using a Co2+ crystal face exposure agent. The facet-dependent modifications exhibit excellent and balanced intrinsic charge transport properties, and finely optimize both the sensitivity and detection limit of BiVO4 X-ray detectors. As a result, ultra-stable BiVO4 metal oxide X-ray detectors demonstrate a high sensitivity of 3164 µC Gyair -1 cm-2 and a low detection limit of 20.76 nGyair s-1 under 110 kVp hard X-rays, establishing a new benchmark for X-ray detectors based on polycrystalline Bi-halides and metal oxides. These findings highlight the significance of crystal orientation in optimizing materials for X-ray detection, setting a new sensitivity record for X-ray detectors based on polycrystalline Bi-halides and metal oxides, which paves the way for the development of advanced, low-dose, and highly stable imaging systems specifically for hard X-rays.

10.
Article En | MEDLINE | ID: mdl-38743553

We propose a self-supervised approach for 3D dynamic reconstruction of articulated motions based on Generative Adversarial Networks and Neural Radiance Fields. Our method reconstructs articulated objects and recover their continuous motions and attributes from an unordered, discontinuous image set. Notably, we treat motion states as time-independent, recognizing that articulated objects can exhibit identical motions at different times. The key insight of our approach utilizes generative adversarial networks to create a continuous implicit motion state space. Initially, we employ a motion network extracts discrete motion states from images as anchors. These anchors are then expanded across the latent space using generative adversarial networks. Subsequently, motion state latent codes are input into motion-aware neural radiance fields for dynamic appearance and geometry reconstruction. To deduce motion attributes from the continuously generated motions, we adopt a cluster-based strategy. We thoroughly evaluate and validate our method on both synthesized and real data, demonstrating superior fidelity in appearances, geometries, and motion attributes of articulated objects compared to state-of-the-art methods.

12.
Int J Biol Macromol ; 270(Pt 1): 132242, 2024 May 09.
Article En | MEDLINE | ID: mdl-38729487

Vascular endothelial growth factor (VEGF) and VEGF reporter (VEGFR) are essential molecules in VEGF signalling pathway. Although the functions of VEGF and VEGFR have been well reported in vertebrates, their functions are still poorly understood in invertebrates. In this study, the open reading frame sequences of EsVEGF1 and EsVEGFR4 were cloned from Eriocheir sinensis, and their corresponding proteins shared typical structure characteristics with their counterparts in other species. EsVEGF1 were predominantly expressed in hepatopancreas and muscle while EsVEGFR4 mainly expressed in hemocytes and intestine. The expression levels of EsVEGF1 in hemocytes were rapidly induced by Staphylococcus aureus and Vibrio parahaemolyticus, and it also increased rapidly in hepatopancreas after being challenged with V. parahaemolyticus. The expression levels of EsVEGFR4 only increased in hepatopancreas of crabs injected with S. aureus. The extracellular immunoglobulin domain of EsVEGFR4 could bind with Gram-negative and Gram-positive bacteria as well as lipopolysaccharide and peptidoglycan. EsVEGF1 could act as the ligand for EsVEGFR4 and Toll-like receptor and regulate the expression of crustins and lysozyme with a tissue-specific manner, while have no regulatory function on that of anti-lipopolysaccharide factors. This study will provide new insights into the immune defense mechanisms mediated by VEGF and VEGFR in crustaceans.

13.
Sci Total Environ ; 934: 173277, 2024 May 15.
Article En | MEDLINE | ID: mdl-38754510

As an important precursor of secondary inorganic aerosols (SIAs), ammonia (NH3) plays a key role in fine particulate matter (PM2.5) formation. In order to investigate its impacts on haze formation in the North China Plain (NCP) during winter, NH3 concentrations were observed at a high-temporal resolution of 1 min by using the SP-DOAS in Tai'an from December 2021 to February 2022. During the observation period, the average NH3 concentration was 11.84 ± 5.9 ppbv, and it was determined as an ammonia-rich environment during different air quality conditions. Furthermore, the average concentrations of sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) were 9.54 ± 5.97 µg/m3, 19.09 ± 14.18 µg/m3 and 10.72 ± 6.53 µg/m3, respectively. Under the nitrate-dominated atmospheric environment, aerosol liquid water content (ALWC) was crucial for NH3 particle transformation during haze aggravation, and the gas-particle partitioning of ammonia played an important role in the SIAs formation. The reconstruction of the molecular composition further indicated that ammonium nitrate (NH4NO3) plays a dominant role in the increase of PM2.5 during haze events. Consequently, future efforts to mitigate fine particulate pollution in this region should focus on controlling NH4NO3 levels. In ammonia-rich environments, NO3- formation is more dependent on the concentration of nitric acid (HNO3). The sensitive analysis of TNO3 (HNO3 + NO3-) and NHX (NH3 + NH4+) reduction using the thermodynamic model suggested that the NO3- concentration decreases linearly with the reduction of TNO3. And the concentration of NO3- decreases rapidly only when NHX is reduced by 50-60 %. Reducing NOX emissions is the most effective way to alleviate nitrate pollution in this region.

14.
J Virol ; : e0049424, 2024 May 17.
Article En | MEDLINE | ID: mdl-38757985

Mitochondria are energy producers in cells, which can affect viral replication by regulating the host innate immune signaling pathways, and the changes in their biological functions are inextricably linked the viral life cycle. In this study, we screened a library of 382 mitochondria-targeted compounds and identified the antiviral inhibitors of dihydroorotate dehydrogenase (DHODH), the rate-limiting enzyme in the de novo synthesis pathway of pyrimidine ribonucleotides, against classical swine fever virus (CSFV). Our data showed that the inhibitors interfered with viral RNA synthesis in a dose-dependent manner, with half-maximal effective concentrations (EC50) ranging from 0.975 to 26.635 nM. Remarkably, DHODH inhibitors obstructed CSFV replication by enhancing the innate immune response including the TBK1-IRF3-STAT1 and NF-κB signaling pathways. Furthermore, the data from a series of compound addition and supplementation trials indicated that DHODH inhibitors also inhibited CSFV replication by blocking the de novo pyrimidine synthesis. Remarkably, DHODH knockdown demonstrated that it was essential for CSFV replication. Mechanistically, confocal microscopy and immunoprecipitation assays showed that the non-structural protein 4A (NS4A) recruited and interacted with DHODH in the perinuclear. Notably, NS4A enhanced the DHODH activity and promoted the generation of UMP for efficient viral replication. Structurally, the amino acids 65-229 of DHODH and the amino acids 25-40 of NS4A were pivotal for this interaction. Taken together, our findings highlight the critical role of DHODH in the CSFV life cycle and offer a potential antiviral target for the development of novel therapeutics against CSF. IMPORTANCE: Classical swine fever remains one of the most economically important viral diseases of domestic pigs and wild boar worldwide. dihydroorotate dehydrogenase (DHODH) inhibitors have been shown to suppress the replication of several viruses in vitro and in vivo, but the effects on Pestivirus remain unknown. In this study, three specific DHODH inhibitors, including DHODH-IN-16, BAY-2402234, and Brequinar were found to strongly suppress classical swine fever virus (CSFV) replication. These inhibitors target the host DHODH, depleting the pyrimidine nucleotide pool to exert their antiviral effects. Intriguingly, we observed that the non-structural protein 4A of CSFV induced DHODH to accumulate around the nucleus in conjunction with mitochondria. Moreover, NS4A exhibited a strong interaction with DHODH, enhancing its activity to promote efficient CSFV replication. In conclusion, our findings enhance the understanding of the pyrimidine synthesis in CSFV infection and expand the novel functions of CSFV NS4A in viral replication, providing a reference for further exploration of antiviral targets against CSFV.

15.
J Plant Physiol ; 297: 154256, 2024 Jun.
Article En | MEDLINE | ID: mdl-38657393

Basic helix-loop-helix (bHLH) transcription factors play various important roles in plant growth and development. In this study, a AabHLH48 was identified in the floral organ of Adonis amurensis, a perennial herb that can naturally complete flowering at extreme low temperatures. AabHLH48 was widely expressed in various tissues or organs of A. amurensis and was localized in the nucleus. Overexpression of AabHLH48 promotes early flowering in Arabidopsis under both photoperiod (12 h light/12 h dark and 16 h light/8 h dark) and temperature (22 and 18 °C) conditions. Transcriptome sequencing combined with quantitative real-time PCR analysis showed that overexpression of AabHLH48 caused a general upregulation of genes involved in floral development in Arabidopsis, especially for AtAGAMOUS-LIKE 8/FRUITFULL (AtAGL8/FUL). The yeast one-hybrid assay revealed that AabHLH48 has transcriptional activating activity and can directly bind to the promoter region of AtAGL8/FUL. These results suggest that the overexpression of AabHLH48 promoting early flowering in Arabidopsis is associated with the upregulated expression of AtAGL8/FUL activated by AabHLH48. This indicates that AabHLH48 can serve as an important genetic resource for improving flowering-time control in other ornamental plants or crops.


Adonis , Arabidopsis , Basic Helix-Loop-Helix Transcription Factors , Flowers , Gene Expression Regulation, Plant , Plant Proteins , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis/physiology , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Adonis/genetics , Adonis/metabolism , Photoperiod , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plants, Genetically Modified/genetics
16.
Heliyon ; 10(5): e26965, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38562495

This paper introduces a novel, Simple-based Dynamic Decentralized Community Detection Algorithm (S-DCDA) for Socially Aware Networks. This algorithm aims to address the resource-intensive nature, instabilities and inaccuracies of traditional distributed community detection algorithms. The dynamics of decentralization is evident in the threefold nature of the algorithm: (i) each node of the community is the core of the entire network or community for a certain period of time dependent on their need, (ii) nodes are not centralized around themselves, requiring the consent of the other node to join a community, and (iii) Communities start from a single node to form an initial scale community, the number of nodes and the relationship among them are constantly changing. The algorithm requires low processor performance and memory capacity size of each node, to a certain extent, effectively improve the accuracy and stability of community detection and maintenance. Experimental results demonstrate that in comparison to classical and classical-based improved community detection algorithms, S-DCDA yields superior detection results.

18.
Accid Anal Prev ; 200: 107565, 2024 Jun.
Article En | MEDLINE | ID: mdl-38569350

During nighttime driving, the inherent challenges of low-illuminance conditions often lead to an increased crash rate and higher fatalities by impairing drivers' ability to recognize imminent hazards. While the severity of this issue is widely recognized, a significant research void exists with regard to strategies to enhance hazard perception under such circumstances. To address this lacuna, our study examined the potential of an intervention grounded in the knowledge-attitude-practice (KAP) framework to bolster nighttime hazard detection among drivers. We engaged a cohort of sixty drivers split randomly into an intervention group (undergoing specialized training) and a control group and employed a holistic assessment that combined eye movement analytics, physiological response monitoring, and driving performance evaluations during simulated scenarios pre- and post-intervention. The data showed that the KAP-centric intervention honed drivers' visual search techniques during nighttime driving, allowing them to confront potential threats with reduced physiological tension and ensuring more adept vehicle handling. These compelling findings support the integration of this methodology in driver training curricula and present an innovative strategy to enhance road safety during nighttime journeys.


Accidents, Traffic , Automobile Driving , Humans , Accidents, Traffic/prevention & control , Attitude , Knowledge , Computer Simulation , Perception
19.
Syst Biol Reprod Med ; 70(1): 91-100, 2024 Dec.
Article En | MEDLINE | ID: mdl-38630599

Conventional semen parameters have long been considered fundamental in male fertility analyses. However, doubts have been raised regarding the clinical utility of the assessment of spermatozoa (sperm) DNA damage. In this retrospective study, we investigated the potential correlation between conventional semen parameters and semen DNA fragmentation (SDF) assessed as sperm DNA damage, in 11,339 semen samples collected between January 2019 and June 2022. We observed significant negative correlations between the DNA fragmentation index (DFI) and sperm viability (correlation coefficient [r] = -0.514) as well as progressive sperm motility (r = -0.512, p < 0.05). Samples were categorized into three groups according to DFI levels (Groups A, B, and C: ≤15%, 15 < DFI ≤30%, and >30%, respectively). Furthermore, the percentage of semen samples with normal sperm conventional parameters in Groups A, B, and C was 76.7% (4369/5697), 61.4% (2351/3827), and 39.7% (721/1815), respectively. Moreover, according to the reference values of conventional sperm parameters, the samples were divided into Groups F, G, and H with all normal, only one abnormal, and > two abnormal parameters, respectively. In addition, the proportions of samples with abnormal DFI values (>30) in Groups F, G, and H were 9.7% (721/7441), 23.1% (618/2676), and 39.0% (476/1222), respectively. Multivariate logistic regression models demonstrated that sperm vitality, progressive sperm motility, normal sperm form, total sperm count, semen volume, age, and some sperm kinematics collectively improved the area under the receiver operating characteristic curve (AUROC) to 0.861, surpassing the predictive value of a single predictor of pathologically damaged sperm DNA. Our study suggests that samples with abnormal sperm parameters may have a higher likelihood of high DNA fragmentation. Furthermore, certain semen parameters could be potential indicators of sperm DNA fragmentation, aiding sperm selection in assisted reproductive procedures.


Infertility, Male , Semen , Male , Humans , DNA Fragmentation , Retrospective Studies , Sperm Motility , Spermatozoa , Semen Analysis , Infertility, Male/genetics
20.
Mol Pharm ; 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38666508

Imaging strategies for the specific detection and therapeutic monitoring of myocarditis are still lacking. Stimulator of interferon genes (STING) is a signal transduction molecule involved in an innate immune response. Here, we evaluated the feasibility of the recently developed STING-targeted radiotracer [18F]FBTA for positron emission tomography (PET) imaging to detect myocardial inflammation and monitor treatment in myocarditis mice. [18F]FBTA-PET imaging was performed in myocarditis mice and normal mice to verify the specificity of [18F]FBTA for the diagnosis of myocarditis. We also performed PET imaging in mice with myocarditis treated to verify the ability of [18F]FBTA in therapeutic monitoring. The expression of STING and inflammatory cell types was confirmed by flow cytometry and immunohistochemistry. [18F]FDG-PET imaging of myocarditis was used as a contrast. [18F]FBTA-PET imaging showed that the average radioactive uptake was significantly higher in the hearts of the myocarditis group than in the control group. STING was highly overexpressed in cardiac inflammatory cells, including macrophages, dendritic cells (DCs), and T cells. However, there was no significant difference in cardiac radiotracer uptake of [18F]FDG between the myocarditis group and the control group. Moreover, cardiac uptake of [18F]FBTA was significantly reduced in cyclosporin A-treated myocarditis mice and myocardial STING expression was also significantly reduced after the treatment. Overall, we showed that a STING-targeted PET tracer [18F]FBTA can be used to monitor changes in the inflammatory microenvironment in myocarditis. Besides, [18F]FBTA-PET is also suitable for real-time monitoring of myocarditis treatment, representing a promising diagnostic and therapeutic monitoring approach for myocarditis.

...