Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 58
1.
bioRxiv ; 2024 May 11.
Article En | MEDLINE | ID: mdl-38766195

Depletion of microbiota increases susceptibility to gastrointestinal colonization and subsequent infection by opportunistic pathogens such as methicillin-resistant Staphylococcus aureus (MRSA). How the absence of gut microbiota impacts the evolution of MRSA is unknown. The present report used germ-free mice to investigate the evolutionary dynamics of MRSA in the absence of gut microbiota. Through genomic analyses and competition assays, we found that MRSA adapts to the microbiota-free gut through sequential genetic mutations and structural changes that enhance fitness. Initially, these adaptations increase carbohydrate transport; subsequently, evolutionary pathways largely diverge to enhance either arginine metabolism or cell wall biosynthesis. Increased fitness in arginine pathway mutants depended on arginine catabolic genes, especially nos and arcC , which promote microaerobic respiration and ATP generation, respectively. Thus, arginine adaptation likely improves redox balance and energy production in the oxygen-limited gut environment. Findings were supported by human gut metagenomic analyses, which suggest the influence of arginine metabolism on colonization. Surprisingly, these adaptive genetic changes often reduced MRSA's antimicrobial resistance and virulence. Furthermore, resistance mutation, typically associated with decreased virulence, also reduced colonization fitness, indicating evolutionary trade-offs among these traits. The presence of normal microbiota inhibited these adaptations, preserving MRSA's wild-type characteristics that effectively balance virulence, resistance, and colonization fitness. The results highlight the protective role of gut microbiota in preserving a balance of key MRSA traits for long-term ecological success in commensal populations, underscoring the potential consequences on MRSA's survival and fitness during and after host hospitalization and antimicrobial treatment. Importance: The fitness of MRSA depends on its ability to colonize. A key, underappreciated observation is that gut colonization frequently serves as the site for MRSA infections, especially among vulnerable groups such as children and hospitalized adults. By evolving MRSA strains in germ-free mice, we identify molecular mechanisms underlying how MRSA exploits a depletion in host microbiota to enhance gut colonization fitness. This work points to bacterial colonization factors that may be targetable. Our findings indicate that adaptive changes in MRSA often reduce its antimicrobial resistance and virulence, and are suppressed by the presence of native commensal bacteria. This work helps explain the ecology of pathoadaptive variants that thrive in hospital settings but falter under colonization conditions in healthy hosts. Additionally, it illustrates the potential adverse effects of prolonged, broad-spectrum empirical antimicrobial therapy and adds a new type of weight to calls for microbiota transplantation to reduce colonization by antimicrobial-resistant pathogens.

2.
IDCases ; 36: e01989, 2024.
Article En | MEDLINE | ID: mdl-38774153

Eubacterium species are a group of obligated anaerobic gram-positive bacilli that are recognized as commensals of the gastrointestinal tract flora. Cases of bacteremia mediated by Eubacterium are rare. This report describes a case of bacteremia caused by Eubacterium callanderi in an 82-year-old female with a history of a cecal perforation secondary to an obstructing sigmoid stricture. The results showed the utility of using whole genome sequencing to identify the causative agent and underlined the significance to identify anaerobic organisms in diagnostic microbiology practice and to perform antimicrobial susceptibility testing to guide therapy and enhance patient outcomes.

3.
Front Aging Neurosci ; 16: 1402347, 2024.
Article En | MEDLINE | ID: mdl-38765772

Background: Mild cognitive impairment (MCI) is commonly defined as a transitional subclinical state between normal aging and dementia. A growing body of research indicates that health behaviors may play a protective role against cognitive decline and could potentially slow down the progression from MCI to dementia. The aim of this study is to conduct a bibliometric analysis of literature focusing on health behaviors and MCI to summarize the factors and evidence regarding the influence of health behaviors on MCI. Methods: The study performed a bibliometric analysis by retrieving publications from the Science Citation Index and Social Sciences Citation Index sub-databases within the Web of Science Core Collection. Utilizing VOSviewer and CiteSpace software, a total of 2,843 eligible articles underwent co-citation, co-keywords, and clustering analyses. This methodology aimed to investigate the current status, trends, major research questions, and potential future directions within the research domain. Results: The bibliometric analysis indicates that research on healthy behaviors in individuals with MCI originated in 2002 and experienced rapid growth in 2014, reflecting the increasing global interest in this area. The United States emerged as the primary contributor, accounting for more than one-third of the total scientific output with 982 articles. Journals that published the most articles on MCI-related health behaviors included "Journal of Alzheimer's Disease," "Neurobiology of Aging," "Frontiers in Aging Neuroscience," and other geriatrics-related journals. High-impact papers identified by VOSviewer predominantly cover concepts related to MCI, such as diagnostic criteria, assessment, and multifactorial interventions. Co-occurrence keyword analysis highlights five research hotspots in health behavior associated with MCI: exercise, diet, risk factors and preventive measures for dementia, cognitive decline-related biomarkers, and clinical trials. Conclusion: This study provides a comprehensive review of literature on health behavior in individuals with MCI, emphasizing influential documents and journals. It outlines research trends and key focal points, offering valuable insights for researchers to comprehend significant contributions and steer future studies.

4.
bioRxiv ; 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38659881

We recently described the evolution of a community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) USA300 variant responsible for an outbreak of skin and soft tissue infections. Acquisition of a mosaic version of the Φ11 prophage (mΦ11) that increases skin abscess size was an early step in CA-MRSA adaptation that primed the successful spread of the clone. The present report shows how prophage mΦ11 exerts its effect on virulence for skin infection without encoding a known toxin or fitness genes. Abscess size and skin inflammation were associated with DNA methylase activity of an mΦ11-encoded adenine methyltransferase (designated pamA). pamA increased expression of fibronectin-binding protein A (fnbA; FnBPA), and inactivation of fnbA eliminated the effect of pamA on abscess virulence without affecting strains lacking pamA. Thus, fnbA is a pamA-specific virulence factor. Mechanistically, pamA was shown to promote biofilm formation in vivo in skin abscesses, a phenotype linked to FnBPA's role in biofilm formation. Collectively, these data reveal a novel mechanism-epigenetic regulation of staphylococcal gene expression-by which phage can regulate virulence to drive adaptive leaps by S. aureus.

5.
Elife ; 122024 Apr 30.
Article En | MEDLINE | ID: mdl-38687677

The agr quorum-sensing system links Staphylococcus aureus metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of H2O2, a crucial host defense against S. aureus. We now report that protection by agr surprisingly extends beyond post-exponential growth to the exit from stationary phase when the agr system is no longer turned on. Thus, agr can be considered a constitutive protective factor. Deletion of agr resulted in decreased ATP levels and growth, despite increased rates of respiration or fermentation at appropriate oxygen tensions, suggesting that Δagr cells undergo a shift towards a hyperactive metabolic state in response to diminished metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the agr mutant than in wild-type cells, thereby explaining elevated susceptibility of Δagr strains to lethal H2O2 doses. Increased survival of wild-type agr cells during H2O2 exposure required sodA, which detoxifies superoxide. Additionally, pretreatment of S. aureus with respiration-reducing menadione protected Δagr cells from killing by H2O2. Thus, genetic deletion and pharmacologic experiments indicate that agr helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived 'memory' of agr-mediated protection, which is uncoupled from agr activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient (Cybb-/-) mice. These results demonstrate the importance of protection that anticipates impending ROS-mediated immune attack. The ubiquity of quorum sensing suggests that it protects many bacterial species from oxidative damage.


Bacterial Proteins , Gene Expression Regulation, Bacterial , Hydrogen Peroxide , Oxidative Stress , Quorum Sensing , Staphylococcus aureus , Trans-Activators , Staphylococcus aureus/genetics , Staphylococcus aureus/physiology , Staphylococcus aureus/metabolism , Quorum Sensing/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Animals , Trans-Activators/metabolism , Trans-Activators/genetics , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Mice , Staphylococcal Infections/microbiology , Microbial Viability , Reactive Oxygen Species/metabolism , Gene Deletion
6.
Acta Pharmacol Sin ; 45(6): 1160-1174, 2024 Jun.
Article En | MEDLINE | ID: mdl-38438581

Nicotinic acetylcholine receptors (nAChRs) regulate pain pathways with various outcomes depending on receptor subtypes, neuron types, and locations. But it remains unknown whether α4ß2 nAChRs abundantly expressed in the substantia nigra pars reticulata (SNr) have potential to mitigate hyperalgesia in pain states. We observed that injection of nAChR antagonists into the SNr reduced pain thresholds in naïve mice, whereas injection of nAChR agonists into the SNr relieved hyperalgesia in mice, subjected to capsaicin injection into the lower hind leg, spinal nerve injury, chronic constriction injury, or chronic nicotine exposure. The analgesic effects of nAChR agonists were mimicked by optogenetic stimulation of cholinergic inputs from the pedunculopontine nucleus (PPN) to the SNr, but attenuated upon downregulation of α4 nAChRs on SNr GABAergic neurons and injection of dihydro-ß-erythroidine into the SNr. Chronic nicotine-induced hyperalgesia depended on α4 nAChRs in SNr GABAergic neurons and was associated with the reduction of ACh release in the SNr. Either activation of α4 nAChRs in the SNr or optogenetic stimulation of the PPN-SNr cholinergic projection mitigated chronic nicotine-induced hyperalgesia. Interestingly, mechanical stimulation-induced ACh release was significantly attenuated in mice subjected to either capsaicin injection into the lower hind leg or SNI. These results suggest that α4 nAChRs on GABAergic neurons mediate a cholinergic analgesic circuit in the SNr, and these receptors may be effective therapeutic targets to relieve hyperalgesia in acute and chronic pain, and chronic nicotine exposure.


GABAergic Neurons , Hyperalgesia , Mice, Inbred C57BL , Receptors, Nicotinic , Animals , Receptors, Nicotinic/metabolism , GABAergic Neurons/metabolism , GABAergic Neurons/drug effects , GABAergic Neurons/physiology , Male , Hyperalgesia/metabolism , Hyperalgesia/drug therapy , Mice , Pars Reticulata/metabolism , Pars Reticulata/drug effects , Nicotine/pharmacology , Analgesics/pharmacology , Nicotinic Agonists/pharmacology , Nicotinic Antagonists/pharmacology , Capsaicin/pharmacology , Acetylcholine/metabolism , Optogenetics , Pain Threshold/drug effects
7.
J Neurosci ; 44(15)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38453468

The comorbidity of chronic pain and depression poses tremendous challenges for the treatment of either one because they exacerbate each other with unknown mechanisms. As the posterior insular cortex (PIC) integrates multiple somatosensory and emotional information and is implicated in either chronic pain or depression, we hypothesize that the PIC and its projections may contribute to the pathophysiology of comorbid chronic pain and depression. We show that PIC neurons were readily activated by mechanical, thermal, aversive, and stressful and appetitive stimulation in naive and neuropathic pain male mice subjected to spared nerve injury (SNI). Optogenetic activation of PIC neurons induced hyperalgesia and conditioned place aversion in naive mice, whereas inhibition of these neurons led to analgesia, conditioned place preference (CPP), and antidepressant effect in both naive and SNI mice. Combining neuronal tracing, optogenetics, and electrophysiological techniques, we found that the monosynaptic glutamatergic projections from the PIC to the basolateral amygdala (BLA) and the ventromedial nucleus (VM) of the thalamus mimicked PIC neurons in pain modulation in naive mice; in SNI mice, both projections were enhanced accompanied by hyperactivity of PIC, BLA, and VM neurons and inhibition of these projections led to analgesia, CPP, and antidepressant-like effect. The present study suggests that potentiation of the PIC→BLA and PIC→VM projections may be important pathophysiological bases for hyperalgesia and depression-like behavior in neuropathic pain and reversing the potentiation may be a promising therapeutic strategy for comorbid chronic pain and depression.


Chronic Pain , Neuralgia , Mice , Male , Animals , Hyperalgesia , Chronic Pain/complications , Depression , Insular Cortex , Amygdala/metabolism , Neuralgia/metabolism , Comorbidity , Thalamus , Antidepressive Agents/therapeutic use
8.
Front Aging Neurosci ; 16: 1349196, 2024.
Article En | MEDLINE | ID: mdl-38419646

Background: Olfactory testing is emerging as a potentially effective screening method for identifying mild cognitive impairment in the elderly population. Objective: Olfactory impairment is comorbid with mild cognitive impairment (MCI) in older adults but is not well-documented in subdomains of either olfactory or subtypes of cognitive impairments in older adults. This meta-analysis was aimed at synthesizing the differentiated relationships with updated studies. Methods: A systematic search was conducted in seven databases from their availability to April 2023. A total of 38 publications were included, including 3,828 MCI patients and 8,160 healthy older adults. Two investigators independently performed the literature review, quality assessment, and data extraction. The meta-analyses were conducted with Stata to estimate the average effects and causes of the heterogeneity. Results: Compared to normal adults, MCI patients had severe impairments in olfactory function and severe deficits in specific domains of odor identification and discrimination. Olfactory impairment was more severe in patients with amnestic mild cognitive impairment than in patients with non-amnestic MCI. Diverse test instruments of olfactory function caused large heterogeneity in effect sizes. Conclusion: Valid olfactory tests can be complementary tools for accurate screening of MCI in older adults.

9.
Front Aging Neurosci ; 16: 1332767, 2024.
Article En | MEDLINE | ID: mdl-38410746

Background and aims: Amnestic mild cognitive impairment (aMCI) is the most common subtype of MCI, which carries a significantly high risk of transitioning to Alzheimer's disease. Recently, increasing attention has been given to remnant cholesterol (RC), a non-traditional and previously overlooked risk factor. The aim of this study was to explore the association between plasma RC levels and aMCI. Methods: Data were obtained from Brain Health Cognitive Management Team in Wuhan (https://hbtcm.66nao.com/admin/). A total of 1,007 community-dwelling elders were recruited for this project. Based on ten tools including general demographic data, cognitive screening and some exclusion scales, these participants were divided into the aMCI (n = 401) and normal cognitive groups (n = 606). Physical examinations were conducted on all participants, with clinical indicators such as blood pressure, blood sugar, and blood lipids collected. Results: The aMCI group had significantly higher RC levels compared to the normal cognitive group (0.64 ± 0.431 vs. 0.52 ± 0.447 mmol/L, p < 0.05). Binary logistics regression revealed that occupation (P<0.001, OR = 0.533, 95%CI: 0.423-0.673) and RC (p = 0.014, OR = 1.477, 95% CI:1.081-2.018) were associated factors for aMCI. Partial correlation analysis, after controlling for occupation, showed a significant negative correlation between RC levels and MoCA scores (r = 0.059, p = 0.046), as well as Naming scores (r = 0.070, p = 0.026). ROC curve analysis demonstrated that RC levels had an independent predictive efficacy in predicting aMCI (AUC = 0.580, 95%CI: 0.544 ~ 0.615, P < 0.001). Conclusion: Higher RC levels were identified as an independent indicator for aMCI, particularly in the naming cognitive domain among older individuals. Further longitudinal studies are necessary to validate the predictive efficacy of RC.

10.
PLoS Biol ; 22(2): e3002518, 2024 Feb.
Article En | MEDLINE | ID: mdl-38386616

Neurons in the subthalamic nucleus (STN) become hyperactive following nerve injury and promote pain-related responses in mice. Considering that the anterior cingulate cortex (ACC) is involved in pain and emotion processing and projects to the STN, we hypothesize that ACC neurons may contribute to hyperactivity in STN neurons in chronic pain. In the present study, we showed that ACC neurons enhanced activity in response to noxious stimuli and to alterations in emotional states and became hyperactive in chronic pain state established by spared nerve injury of the sciatic nerve (SNI) in mice. In naïve mice, STN neurons were activated by noxious stimuli, but not by alterations in emotional states. Pain responses in STN neurons were attenuated in both naïve and SNI mice when ACC neurons were inhibited. Furthermore, optogenetic activation of the ACC-STN pathway induced bilateral hyperalgesia and depression-like behaviors in naive mice; conversely, inhibition of this pathway is sufficient to attenuate hyperalgesia and depression-like behaviors in SNI mice and naïve mice subjected to stimulation of STN neurons. Finally, mitigation of pain-like and depression-like behaviors in SNI mice by inhibition of the ACC-STN projection was eliminated by activation of STN neurons. Our results demonstrate that hyperactivity in the ACC-STN pathway may be an important pathophysiology in comorbid chronic pain and depression. Thus, the ACC-STN pathway may be an intervention target for the treatment of the comorbid chronic pain and depression.


Chronic Pain , Mice , Male , Animals , Gyrus Cinguli/physiology , Hyperalgesia , Depression , Neurons/physiology
11.
Clin Nutr ; 43(3): 881-891, 2024 03.
Article En | MEDLINE | ID: mdl-38377634

OBJECTIVE: The aim of this study is using clinical factors and non-enhanced computed tomography (CT) deep features of the psoas muscles at third lumbar vertebral (L3) level to construct a model to predict malnutrition in gastric cancer before surgery, and to provide a new nutritional status assessment and survival assessment tool for gastric cancer patients. METHODS: A retrospective analysis of 312 patients of gastric cancer were divided into malnutrition group and normal group based on Nutrition Risk Screening 2002(NRS-2002). 312 regions of interest (ROI) of the psoas muscles at L3 level of non-enhanced CT were delineated. Deep learning (DL) features were extracted from the ROI using a deep migration model and were screened by principal component analysis (PCA) and least-squares operator (LASSO). The clinical predictors included Body Mass Index (BMI), lymphocyte and albumin. Both deep learning model (including deep learning features) and mixed model (including selected deep learning features and selected clinical predictors) were constructed by 11 classifiers. The model was evaluated and selected by calculating receiver operating characteristic (ROC), area under curve (AUC), accuracy, sensitivity and specificity, calibration curve and decision curve analysis (DCA). The Cohen's Kappa coefficient (κ) was using to compare the diagnostic agreement for malnutrition between the mixed model and the GLIM in gastric cancer patients. RESULT: The results of logistics multivariate analysis showed that BMI [OR = 0.569 (95% CI 0.491-0.660)], lymphocyte [OR = 0.638 (95% CI 0.408-0.998)], and albumin [OR = 0.924 (95% CI 0.859-0.994)] were clinically independent malnutrition of gastric cancer predictor(P < 0.05). Among the 11 classifiers, the Multilayer Perceptron (MLP)were selected as the best classifier. The AUC of the training and test sets for deep learning model were 0.806 (95% CI 0.7485-0.8635) and 0.769 (95% CI 0.673-0.863) and with accuracies were 0.734 and 0.766, respectively. The AUC of the training and test sets for the mixed model were 0.909 (95% CI 0.869-0.948) and 0.857 (95% CI 0.782-0.931) and with accuracies of 0.845 and 0.861, respectively. The DCA confirmed the clinical benefit of the both models. The Cohen's Kappa coefficient (κ) was 0.647 (P < 0.001). Diagnostic agreement for malnutrition between the mixed model and GLIM criteria was good. The mixed model was used to calculate the predicted probability of malnutrition in gastric cancer patients, which was divided into high-risk and low-risk groups by median, and the survival analysis showed that the overall survival time of the high-risk group was significantly lower than that of the low-risk group (P = 0.005). CONCLUSION: Deep learning based on mixed model may be a potential tool for predicting malnutrition in gastric cancer patients.


Benzamides , Deep Learning , Malnutrition , Phenylenediamines , Stomach Neoplasms , Humans , Stomach Neoplasms/complications , Stomach Neoplasms/diagnostic imaging , Retrospective Studies , Malnutrition/diagnosis , Malnutrition/etiology , Albumins , Tomography
12.
bioRxiv ; 2024 Feb 28.
Article En | MEDLINE | ID: mdl-37333372

The agr quorum-sensing system links Staphylococcus aureus metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of H2O2, a crucial host defense against S. aureus. We now report that protection by agr surprisingly extends beyond post-exponential growth to the exit from stationary phase when the agr system is no longer turned on. Thus, agr can be considered a constitutive protective factor. Deletion of agr increased both respiration and fermentation but decreased ATP levels and growth, suggesting that Δagr cells assume a hyperactive metabolic state in response to reduced metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the agr mutant than in wild-type cells, thereby explaining elevated susceptibility of Δagr strains to lethal H2O2 doses. Increased survival of wild-type agr cells during H2O2 exposure required sodA, which detoxifies superoxide. Additionally, pretreatment of S. aureus with respiration-reducing menadione protected Δagr cells from killing by H2O2. Thus, genetic deletion and pharmacologic experiments indicate that agr helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived "memory" of agr-mediated protection, which is uncoupled from agr activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient (Nox2-/-) mice. These results demonstrate the importance of protection that anticipates impending ROS-mediated immune attack. The ubiquity of quorum sensing suggests that it protects many bacterial species from oxidative damage.

13.
PLoS Pathog ; 19(9): e1011647, 2023 Sep.
Article En | MEDLINE | ID: mdl-37738244

The bacterial microbiota promotes the life cycle of the intestine-dwelling whipworm Trichuris by mediating hatching of parasite eggs ingested by the mammalian host. Despite the enormous disease burden associated with Trichuris colonization, the mechanisms underlying this transkingdom interaction have been obscure. Here, we used a multiscale microscopy approach to define the structural events associated with bacteria-mediated hatching of eggs for the murine model parasite Trichuris muris. Through the combination of scanning electron microscopy (SEM) and serial block face SEM (SBFSEM), we visualized the outer surface morphology of the shell and generated 3D structures of the egg and larva during the hatching process. These images revealed that exposure to hatching-inducing bacteria catalyzed asymmetric degradation of the polar plugs prior to exit by the larva. Unrelated bacteria induced similar loss of electron density and dissolution of the structural integrity of the plugs. Egg hatching was most efficient when high densities of bacteria were bound to the poles. Consistent with the ability of taxonomically distant bacteria to induce hatching, additional results suggest chitinase released from larva within the eggs degrade the plugs from the inside instead of enzymes produced by bacteria in the external environment. These findings define at ultrastructure resolution the evolutionary adaptation of a parasite for the microbe-rich environment of the mammalian gut.


Microbiota , Trichuris , Mice , Animals , Microscopy, Electron, Scanning , Bacteria , Larva , Ovum , Mammals
14.
STAR Protoc ; 4(3): 102551, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37660296

Analysis of synaptic strength and plasticity provides functional insights of complicated neural circuits. Here, we describe steps for cell- and projection-specific optogenetic manipulation of divergent basal ganglia circuits using anterograde and retrograde viral vectors. We quantitatively analyze synaptic function of these circuits utilizing a patch-clamp technique. This protocol is applicable to probe potential circuit targets for treatment of brain diseases. For complete details on the use and execution of this protocol, please refer to Ji et al.1.


Basal Ganglia , Optogenetics , Animals , Mice , Optogenetics/methods , Patch-Clamp Techniques
15.
Acta Pharmacol Sin ; 44(11): 2169-2183, 2023 Nov.
Article En | MEDLINE | ID: mdl-37322164

Excessive self-grooming is an important behavioral phenotype of the stress response in rodents. Elucidating the neural circuit that regulates stress-induced self-grooming may suggest potential treatment to prevent maladaptation to stress that is implicated in emotional disorders. Stimulation of the subthalamic nucleus (STN) has been found to induce strong self-grooming. In this study we investigated the role of the STN and a related neural circuit in mouse stress-related self-grooming. Body-restraint and foot-shock stress-induced self-grooming models were established in mice. We showed that both body restraint and foot shock markedly increased the expression of c-Fos in neurons in the STN and lateral parabrachial nucleus (LPB). Consistent with this, the activity of STN neurons and LPB glutamatergic (Glu) neurons, as assessed with fiber photometry recording, was dramatically elevated during self-grooming in the stressed mice. Using whole-cell patch-clamp recordings in parasagittal brain slices, we identified a monosynaptic projection from STN neurons to LPB Glu neurons that regulates stress-induced self-grooming in mice. Enhanced self-grooming induced by optogenetic activation of the STN-LPB Glu pathway was attenuated by treatment with fluoxetine (18 mg·kg-1·d-1, p.o., for 2 weeks) or in the presence of a cage mate. Furthermore, optogenetic inhibition of the STN-LPB pathway attenuated stress-related but not natural self-grooming. Taken together, these results suggest that the STN-LPB pathway regulates the acute stress response and is a potential target for intervention in stress-related emotional disorders.


Subthalamic Nucleus , Mice , Animals , Grooming , Subthalamic Nucleus/physiology , Neurons/physiology
16.
Nat Commun ; 14(1): 2182, 2023 04 17.
Article En | MEDLINE | ID: mdl-37069246

Nucleus- and cell-specific interrogation of individual basal forebrain (BF) cholinergic circuits is crucial for refining targets to treat comorbid chronic pain-like and depression-like behaviour. As the ventral pallidum (VP) in the BF regulates pain perception and emotions, we aim to address the role of VP-derived cholinergic circuits in hyperalgesia and depression-like behaviour in chronic pain mouse model. In male mice, VP cholinergic neurons innervate local non-cholinergic neurons and modulate downstream basolateral amygdala (BLA) neurons through nicotinic acetylcholine receptors. These cholinergic circuits are mobilized by pain-like stimuli and become hyperactive during persistent pain. Acute stimulation of VP cholinergic neurons and the VP-BLA cholinergic projection reduces pain threshold in naïve mice whereas inhibition of the circuits elevated pain threshold in pain-like states. Multi-day repetitive modulation of the VP-BLA cholinergic pathway regulates depression-like behaviour in persistent pain. Therefore, VP-derived cholinergic circuits are implicated in comorbid hyperalgesia and depression-like behaviour in chronic pain mouse model.


Basal Forebrain , Chronic Pain , Mice , Male , Animals , Basal Forebrain/physiology , Depression , Hyperalgesia , Cholinergic Neurons/physiology
17.
Cell Rep ; 42(3): 112178, 2023 03 28.
Article En | MEDLINE | ID: mdl-36857188

The subthalamic nucleus (STN) controls basal ganglia outputs via the substantia nigra pars reticulata (SNr) and the globus pallidus internus (GPi). However, the synaptic properties of these projections and their roles in motor control remain unclear. We show that the STN-SNr and STN-GPi projections differ markedly in magnitude and activity-dependent plasticity despite the existence of collateral STN neurons projecting to both the SNr and GPi. Stimulation of either STN projection reduces locomotion; in contrast, inhibition of either the STN-SNr projection or collateral STN neurons facilitates locomotion. In 6-OHDA-hemiparkinsonian mice, the STN-SNr projection is dramatically attenuated, but the STN-GPi projection is robustly enhanced; apomorphine inhibition of the STN-GPi projection through D2 receptors is significantly augmented and improves locomotion. Optogenetic inhibition of either the STN-SNr or STN-GPi projection improves parkinsonian bradykinesia. These results suggest that the STN-GPi and STN-SNr projections are differentially involved in motor control in physiological and parkinsonian conditions.


Parkinsonian Disorders , Subthalamic Nucleus , Mice , Animals , Oxidopamine/pharmacology , Basal Ganglia/physiology , Globus Pallidus , Substantia Nigra
18.
Acta Physiol (Oxf) ; 237(3): e13917, 2023 03.
Article En | MEDLINE | ID: mdl-36598331

AIM: This study aims to address the role of the interaction between subthalamic (STN) neurons and substantia nigra pars compacta (SNc) dopaminergic (DA) neurons in movement control. METHODS: Fiber photometry and optogenetic/chemogenetic techniques were utilized to monitor and manipulate neuronal activity, respectively. Locomotion in mice was recorded in an open field arena and on a head-fixed apparatus. A hemiparkinsonian mouse model was established by unilateral injection of 6-OHDA in the medial forebrain bundle. Whole-cell patch-clamp techniques were applied to record electrophysiological signals in STN neurons and SNc DA neurons. c-Fos-immunostaining was used to label activated neurons. A rabies virus-based retrograde tracing system was used to visualize STN neurons projecting to SNc DA neurons. RESULTS: The activity of STN neurons was enhanced upon locomotion in an open field arena and on a head-fixed apparatus, and the enhancement was significantly attenuated in parkinsonian mice. Optogenetic stimulation of STN neurons enhanced locomotion, increased activity of SNc DA neurons, meanwhile, reduced latency to movement initiation. Combining optogenetics with patch-clamp recordings, we confirmed that STN neurons innervated SNc DA neurons through glutamatergic monosynaptic connections. Moreover, STN neurons projecting to SNc DA neurons were evenly distributed in the STN. Either 6-OHDA-lesion or chemogenetic inhibition of SNc DA neurons attenuated the enhancement of locomotion by STN stimulation. CONCLUSION: SNc DA neurons not only affect the response of STN neurons to movement, but also contribute to the enhancement of movement by STN stimulation. This study demonstrates the role of STN-SNc interaction in movement control.


Dopaminergic Neurons , Substantia Nigra , Mice , Animals , Dopaminergic Neurons/physiology , Oxidopamine , Electrophysiological Phenomena , Locomotion
19.
Front Public Health ; 11: 1302481, 2023.
Article En | MEDLINE | ID: mdl-38259783

Objective: The aim of this study is to discern the challenges and coping experiences encountered by nursing staff in long-term care facilities in China. This will be achieved through the identification, evaluation, and qualitative synthesis of comprehensive data. Design: This is a qualitative meta-analysis. Methods: The research systematically examined relevant literature sourced from six databases, concluding the search in August 2023. The inclusion criteria encompassed qualitative and mixed-methods studies in both Chinese and English, focusing on challenges faced by nursing staff in long-term care facilities and their corresponding coping strategies. The application of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework facilitated the qualitative meta-integration process. Three independent researchers meticulously screened and assessed the quality of the chosen studies. The synthesis process sought to amalgamate and structure analogous findings into novel categories through multiple readings of the original literature. These categories were subsequently distilled into comprehensive themes. Results: Analyzed 15 articles revealed 14 sub-themes and 4 overarching analytical themes. These encompassed Sources of Challenges such as multitasking, clinical emergencies, workplace conflict, demand exceeding resources, and occupational discrimination. Psychological impacts included suppressed emotion, compassion fatigue, and self-doubt. Practical consequences involved damaged health, imbalanced life, and occupational disappointment. Coping strategies identified were self-adjusting, feeling validation and belonging, and finding support. Conclusion: Our research identified the challenges faced by nursing staff in Chinese long-term care facilities and their coping experiences. We found that most challenges could be mitigated through appropriate adjustments in managerial strategies, such as reasonable human resources planning, and providing resource support, including material, emotional, and informational support. Similarly, institutions should have offered necessary emotional and psychological support to nursing staff to overcome the negative impacts of challenges and encourage them to adopt positive coping strategies.


Long-Term Care , Nursing Staff , Humans , China , Asian People , Coping Skills
20.
Nat Commun ; 13(1): 7756, 2022 12 15.
Article En | MEDLINE | ID: mdl-36522327

The basal ganglia including the subthalamic nucleus (STN) and substantia nigra pars reticulata (SNr) are involved in pain-related responses, but how they regulate pain processing remains unknown. Here, we identify a pathway, consisting of GABAergic neurons in the SNr (SNrGABA) and glutamatergic neurons in the STN (STNGlu) and the lateral parabrachial nucleus (LPBGlu), that modulates acute and persistent pain states in both male and female mice. The activity of STN neurons was enhanced in acute and persistent pain states. This enhancement was accompanied by hypoactivity in SNrGABA neurons and strengthening of the STN-LPB glutamatergic projection. Reversing the dysfunction in the SNrGABA-STNGlu-LPBGlu pathway attenuated activity of LPBGlu neurons and mitigated pain-like behaviors. Therefore, the SNrGABA-STNGlu-LPBGlu pathway regulates pathological pain and is a potential target for pain management.


GABAergic Neurons , Substantia Nigra , Male , Female , Mice , Animals , Substantia Nigra/metabolism , Electric Stimulation , GABAergic Neurons/metabolism , gamma-Aminobutyric Acid/metabolism , Pain/metabolism
...