Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Anim Sci Biotechnol ; 15(1): 86, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38858724

RESUMEN

BACKGROUND: Previous studies have shown that the vitrification of metaphase II (MII) oocytes significantly represses their developmental potential. Abnormally increased oxidative stress is the probable factor; however, the underlying mechanism remains unclear. The walnut-derived peptide TW-7 was initially isolated and purified from walnut protein hydrolysate. Accumulating evidences implied that TW-7 was a powerful antioxidant, while its prospective application in oocyte cryopreservation has not been reported. RESULT: Here, we found that parthenogenetic activation (PA) zygotes derived from vitrified MII oocytes showed elevated ROS level and delayed progression of pronucleus formation. Addition of 25 µmol/L TW-7 in warming, recovery, PA, and embryo culture medium could alleviate oxidative stress in PA zygotes from vitrified mouse MII oocytes, furtherly increase proteins related to histone lactylation such as LDHA, LDHB, and EP300 and finally improve histone lactylation in PA zygotes. The elevated histone lactylation facilitated the expression of minor zygotic genome activation (ZGA) genes and preimplantation embryo development. CONCLUSIONS: Our findings revealed the mechanism of oxidative stress inducing repressed development of PA embryos from vitrified mouse MII oocytes and found a potent and easy-obtained short peptide that could significantly rescue the decreased developmental potential of vitrified oocytes, which would potentially contribute to reproductive medicine, animal protection, and breeding.

2.
Biochem Biophys Rep ; 38: 101719, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38708422

RESUMEN

Empirical studies have indicated that excessive tea consumption may potentially decrease folate levels within the human body. The main active component in green tea, epigallocatechin gallate (EGCG), significantly reduces the concentration of 5-methyltetrahydrofolate (5-MTHF) in both solution and serum. However, our findings also demonstrate that the pro-degradation effect of EGCG on 5-MTHF can be reversed by L-ascorbic acid (AA). Subsequent investigations suggest that EGCG could potentially expedite the degradation of 5-MTHF by generating hydrogen peroxide. In summary, excessive tea intake may lead to reduced folate levels in the bloodstream, yet timely supplementation of AA could potentially safeguard folate from degradation.

3.
J Proteomics ; 298: 105153, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38438079

RESUMEN

Sperm cryopreservation decreases motility, probably due to changes in protein phosphorylation. Our objective was to use quantitative phosphoproteomics for systematic comparative analyses of fresh versus frozen-thawed sperm to identify factors causing cryo-injury. Ejaculates were collected (artificial vagina) from six Dorper rams, pooled, extended, and frozen over liquid nitrogen. Overall, 915, 3382, and 6875 phosphorylated proteins, phosphorylated peptides, and phosphorylation sites, respectively, were identified. At least two modified sites were present in 57.94% of the 6875 phosphosites identified, of which AKAP4 protein contained up to 331 modified sites. There were 732 phosphorylated peptides significantly up-regulated and 909 significantly down-regulated in frozen-thawed versus fresh sperm. Moreover, the conserved motif [RxxS] was significantly down-regulated in frozen-thawed sperm. Phosphorylation of sperm-specific proteins, e.g., AKAP3/4, CABYR, FSIP2, GSK3A/B, GPI, and ODF1/2 make them potential biomarkers to assess the quality of frozen-thawed ram sperm. Furthermore, these differentially phosphorylated proteins and modification sites were implicated in cryopreservation-induced changes in sperm energy production, fiber sheath composition, and various biological processes. We concluded that abnormal protein phosphorylation modifications are key regulators of reduced sperm motility. These novel findings implicated specific protein phosphorylation modifications in sperm cryo-injury. SIGNIFICANCE: This study used phosphorylated TMT quantitative proteomics to explore regulation of epigenetic modifications in frozen-thawed ram sperm. This experiment demonstrated that ram sperm freezing affects phosphorylation site modifications of proteins, especially those related to functions such as sperm motility and energy production. Furthermore, it is important to link functions of phosphorylated proteins with changes in sperm quality after freezing and thawing, and to clarify intrinsic reasons for sperm quality changes, which is of great importance for elucidating mechanisms of sperm freezing damage. Based on these protein markers and combined with cryoprotectant design theory, it provides a theoretical basis and data reference to study sperm cryoprotectants.


Asunto(s)
Preservación de Semen , Motilidad Espermática , Femenino , Masculino , Ovinos , Animales , Semen , Criopreservación , Espermatozoides , Oveja Doméstica , Péptidos
4.
Theriogenology ; 208: 132-141, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37327742

RESUMEN

Previous studies have demonstrated that melatonin could ameliorate oxidative stress during the cryopreservation of mouse MII oocytes and their in vitro culture after parthenogenetic activation. However, the underlying molecular mechanism remained poorly understood. This study was conducted to investigate whether melatonin could modulate the oxidative stress in the parthenogenetic 2-cell embryos derived from vitrified-warmed oocytes through SIRT1. The results showed that the reactive oxygen species levels increased, the glutathione levels and SIRT1 expression decreased significantly in parthenogenetic 2-cell embryos derived from cryopreserved oocyte, and the parthenogenetic blastocyst formation rates significantly decreased when compared to those derived from control oocytes. These unfavorable phenomena were prevented by the addition of either 10-9 mol/L melatonin or 10-6 mol/L SRT-1720 (SIRT1 agonist), and it was restored by the supplementation of 10-9 mol/L melatonin in combination with 2 × 10-5 mol/L EX527 (SIRT1 inhibitor). Therefore, the findings from the present study concluded that melatonin may reduce oxidative stress via regulating SIRT1, and potentially promote the parthenogenetic development of vitrified-warmed mouse MII oocytes.


Asunto(s)
Melatonina , Animales , Ratones , Melatonina/farmacología , Sirtuina 1 , Oocitos , Partenogénesis , Estrés Oxidativo
6.
Theriogenology ; 204: 8-17, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37030173

RESUMEN

In ram sperm, metabolites are important components of the plasma membrane, energy metabolism cycle, and precursors for other membrane lipids, and they may have important roles in maintaining plasma membrane integrity, energy metabolism, and regulation of cryotolerance. In this study, the ejaculates from 6 Dorper rams were pooled and sperm were systematically investigated by metabolomics at various steps of cryopreservation (37 °C, fresh [F]; from 37 to 4 °C, cooling [C]; and from 4 to -196 to 37 °C, frozen-thawed [FT]) to identify differential metabolites (DM). There were 310 metabolites identified, of which 86 were considered DMs. Regarding the DMs, there were 23 (0 up and 23 down), 25 (12 up and 13 down), and 38 (7 up and 31 down) identified during cooling (C vs F), freezing (FT vs C), and cryopreservation (FT vs F), respectively. Furthermore, some key polyunsaturated fatty acids (FAs), particularly, linoleic acid (LA), docosahexaenoic acid (DHA), and arachidonic acid (AA) were down-regulated during cooling and cryopreservation. Significant DMs were enriched in several metabolic pathways including biosynthesis of unsaturated FAs, LA metabolism, mammalian target of rapamycin (mTOR), forkhead box transcription factors (FoxO), adenosine monophosphate-activated protein kinase (AMPK), phosphatidylinositol 3-kinase/protein kinase B (PI3K-Akt) signaling pathways, regulation of lipolysis in adipocytes, and FA biosynthesis. This was apparently the first report to compare metabolomics profiles of ram sperm during cryopreservation and provided new knowledge to improve this process.


Asunto(s)
Preservación de Semen , Semen , Masculino , Animales , Semen/fisiología , Fosfatidilinositol 3-Quinasas , Criopreservación/veterinaria , Espermatozoides/fisiología , Ácidos Grasos Insaturados , Preservación de Semen/veterinaria , Motilidad Espermática/fisiología , Mamíferos
7.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36675176

RESUMEN

Heparin, a class of glycosaminoglycans (GAGs), is widely used to induce sperm capacitation and fertilization. How heparin induces sperm capacitation remains unclear. Olfactory receptors (ORs) which are G protein-coupled receptors, have been proposed to be involved in sperm capacitation. However, the interaction between ORs and odor molecules and the molecular mechanism of ORs mediating sperm capacitation are still unclear. The present study aimed to explore the underlying interaction and mechanism between heparin and ORs in carrying out the boar sperm capacitation. The results showed that olfactory receptor 2C1 (OR2C1) is a compulsory unit which regulates the sperm capacitation by recognizing and binding with heparin, as determined by Dual-Glo Luciferase Assay and molecular docking. In addition, molecular dynamics (MD) simulation indicated that OR2C1 binds with heparin via a hydrophobic cavity comprises of Arg3, Ala6, Thr7, Asn171, Arg172, Arg173, and Pro287. Furthermore, we demonstrated that knocking down OR2C1 significantly inhibits sperm capacitation. In conclusion, we highlighted a novel olfactory receptor, OR2C1, in boar sperm and disclosed the potential binding of heparin to Pro287, a conserved residue in the transmembrane helices region 7 (TMH7). Our findings will benefit the further understanding of ORs involved in sperm capacitation and fertilization.


Asunto(s)
Heparina , Receptores Odorantes , Capacitación Espermática , Animales , Masculino , Heparina/farmacología , Heparina/metabolismo , Simulación del Acoplamiento Molecular , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Semen/metabolismo , Capacitación Espermática/genética , Capacitación Espermática/fisiología , Espermatozoides/metabolismo , Porcinos
9.
Cells ; 11(22)2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36429002

RESUMEN

Oocyte cryopreservation is widely used in assisted-reproductive technology and animal production. However, cryopreservation not only induces a massive accumulation of reactive oxygen species (ROS) in oocytes, but also leads to oxidative-stress-inflicted damage to mitochondria and the endoplasmic reticulum. These stresses lead to damage to the spindle, DNA, proteins, and lipids, ultimately reducing the developmental potential of oocytes both in vitro and in vivo. Although oocytes can mitigate oxidative stress via intrinsic antioxidant systems, the formation of ribonucleoprotein granules, mitophagy, and the cryopreservation-inflicted oxidative damage cannot be completely eliminated. Therefore, exogenous antioxidants such as melatonin and resveratrol are widely used in oocyte cryopreservation to reduce oxidative damage through direct or indirect scavenging of ROS. In this review, we discuss analysis of various oxidative stresses induced by oocyte cryopreservation, the impact of antioxidants against oxidative damage, and their underlying mechanisms. We hope that this literature review can provide a reference for improving the efficiency of oocyte cryopreservation.


Asunto(s)
Antioxidantes , Estrés Oxidativo , Animales , Antioxidantes/farmacología , Especies Reactivas de Oxígeno , Oocitos , Criopreservación
10.
Front Vet Sci ; 9: 937745, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213414

RESUMEN

Oxidative stress and inflammation seriously affected the growth and development of piglets. Traditional Chinese medicine (TCM) prescriptions has been used to prevent various diseases of piglets, including anti-inflammatory and antioxidant. Here, we identified the effects of Xiao-Jian-Zhong-Tang (XJZT) and Jingsananli-sepsis (JJS) on the oxidative stress and inflammatory in the liver of piglets. The piglets were fed with the basal diet (Control group), basal diet affixed with 10 g/kg XJZT (TCM I group), and basal diet affixed with 3 g/kg JJS (TCM II group), respectively. The serum was gathered on days 30 and 60 and the liver samples were also collected on day 60. Results showed that the TCM I and TCM II markedly increased the activities of the glutathione peroxidase (GSH-Px) and total antioxidant capacity (T-AOC), and reduced the levels of malonaldehyde (MDA), TNF-α, IL-6, and IL-8 in serum. In addition, compared to the control group, Nrf2, SOD-1, NQO-1, and HO-1 mRNA expression levels and the protein levels of Nrf2 and HO-1 were significantly increased while NF-κB, TNF-α, IL-6, and IL-8 mRNA expression levels and the phosphorylation levels of NF-κB and IκB-α were decreased in TCM I and TCM II groups. Collectively, these findings suggested that TCM I and TCM II could enhance anti-oxidative and anti-inflammatory capabilities in the liver of piglets via the Nrf2/NF-κB pathway, providing a basis for the functional exploration of TCM prescriptions.

11.
Front Vet Sci ; 9: 929112, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36148471

RESUMEN

In animal husbandry, traditional Chinese medicine (TCM) as a reasonable alternative to antibiotics has attracted more and more concerns to reduce microbial resistance. This study was aimed to investigate the effects of dietary supplementation with TCM prescriptions on serum parameters and thymus inflammation responses in finishing pigs. Thirty finishing pigs were randomly divided into three groups, which included the Con group (basal diet), the TCM1 group (basal diet supplemented with Xiao Jian Zhong prescriptions), and the TCM2 group (basal diet supplemented with Jingsananli-sepsis). The results showed that the contents of C3 and C4 in the serum were significantly increased in both the TCM1 and TCM2 groups compared to the Con group on day 30. Similarly, the levels of IgA, IgG, and IgM were increased in the TCM2 group, and only the level of IgM in TCM1 was increased on day 30. Meanwhile, the levels of classical swine fever virus (CSFV) and respiratory syndrome virus (PRRSV) antibodies had a notable increase in the TCM1 and TCM2 groups. Both TCM1 and TCM2 inhibited the levels of TLR4/MyD88/NF-κB signaling pathway-related mRNA (TLR4, MyD88, NF-κB, IL6, IL8, and TNF-α) and protein (p-IκBα and p-P65) expression levels in the thymus. In conclusion, dietary supplementation with TCM could reduce thymic inflammation levels and improve humoral immunity of finishing pigs.

12.
Elife ; 112022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35762728

RESUMEN

Staphylococcus aureus infections pose a potential threat to livestock production and public health. A novel strategy is needed to control S. aureus infections due to its adaptive evolution to antibiotics. Autophagy plays a key role in degrading bacteria for innate immune cells. In order to promote S. aureus clearance via Toll-like receptor (TLR)-induced autophagy pathway, the domain fusion TLR2-4 with the extracellular domain of TLR2, specific recognizing S. aureus, and transmembrane and intracellular domains of TLR4 is assembled, then the goat expressing TLR2-4 is generated. TLR2-4 substantially augments the removal of S. aureus within macrophages by elevating autophagy level. Phosphorylated JNK and ERK1/2 promote LC3-puncta in TLR2-4 macrophages during S. aureus-induced autophagy via MyD88 mediated the TAK1 signaling cascade. Meantime, the TRIF-dependent TBK1-TFEB-OPTN signaling is involved in TLR2-4-triggered autophagy after S. aureus challenge. Moreover, the transcript of ATG5 and ATG12 is significantly increased via cAMP-PKA-NF-κB signaling, which facilitates S. aureus-induced autophagy in TLR2-4 macrophages. Overall, the novel receptor TLR2-4 enhances the autophagy-dependent clearance of S. aureus in macrophages via TAK1/TBK1-JNK/ERK, TBK1-TFEB-OPTN, and cAMP-PKA-NF-κB-ATGs signaling pathways, which provide an alternative approach for resistant against S. aureus infection.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Autofagia/genética , Ingeniería Genética , Cabras/genética , Cabras/metabolismo , FN-kappa B/genética , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Receptor Toll-Like 2/genética
13.
J Reprod Immunol ; 151: 103635, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35525084

RESUMEN

The reproductive system can be infected by a variety of double-stranded RNA viruses, which disrupt ovary function and pregnancy. However, whether viral infection directly affects early embryonic development remains unknown. Here we show that Poly(I:C), which mimics a double-stranded RNA virus, significantly impaired mouse early embryonic development in vitro, and up-regulated TLR3 and IFNα at the two cells embryo stage. Further studies indicated that Poly(I:C)-treatment caused DNA damage and abnormal spindle morphology at the first cleavage. Moreover, CDX2 and SOX2 expression was decreased while blastocyst cell apoptosis was increased. Altogether, Poly(I:C) decreased the rate of successful in vitro fertilization via DNA damage and abnormal spindle morphology at the first cleavage and inhibited early embryonic development by inducing immune response and promoting blastocyst cell apoptosis. This study provides an implication for exploring the causes of reproductive disorders in mammals and humans caused by infection of double-stranded RNA virus.


Asunto(s)
Desarrollo Embrionario , ARN Bicatenario , Animales , Blastocisto , Daño del ADN , Femenino , Fertilización In Vitro , Humanos , Mamíferos/genética , Ratones , Embarazo
14.
J Inorg Biochem ; 232: 111818, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35405488

RESUMEN

Cadmium (Cd) is a heavy metal with toxicity that induces mitochondrial dysfunction and aging, and selenium (Se) can alleviate its toxicity. However, the underlying mechanism of Se alleviating Cd-induced aging in sheep livers deserves further study. This study was to explore the protective mechanism of Se on the Cd-induced aging in the livers of sheep. A total of forty-eight sheep weighing about 10 kg were randomly divided into four groups: control group, Se group [0.34 mg Se·kg-1·body weight (BW)], Cd group (1 mg Cd·kg-1·BW), and Se + Cd group (0.34 mg Se·kg-1·BW +1 mg Cd·kg-1·BW). The results showed that Cd caused vacuolization, granule denaturation, and mitochondrial vacuolization in hepatocytes. Furthermore, the levels of catalase (CAT), total superoxide dismutase (T-SOD), glutathione (GSH) and adenosine triphosphate (ATP) in liver mitochondria were down-regulated, but the levels of hydrogen peroxide (H2O2) and malonaldehyde (MDA) were up-regulated under Cd treatment. Besides, the cyclin-dependent kinase inhibitor 1 (P21) immunohistochemistry positive signal and the puncta of immunofluorescence co-locations of E3 ubiquitin ligase Parkin (Parkin)/ cytochrome c oxidase IV (COX IV) and light chain 3B (LC3B)/COX IV were increased under Cd stress. Moreover, Cd exposure decreased the levels of mitochondrial biogenesis and fusion related factors and minichromosome maintenance protein 2 (MCM2), but increased the levels of mitochondrial fission, mitophagy, and cell aging related factors. However, the variations mentioned above caused by Cd were effectively ameliorated by Se co-treatment. In conclusion, Se might alleviate Cd-induced aging via regulating mitochondrial quality control in sheep livers.


Asunto(s)
Selenio , Envejecimiento , Animales , Antioxidantes/farmacología , Cadmio/metabolismo , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Hígado/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Selenio/metabolismo , Selenio/farmacología , Ovinos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/farmacología
15.
Front Vet Sci ; 9: 842259, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35155662

RESUMEN

Molybdenum (Mo), fundamental trace mineral for animals and plants, but undue Mo damages animal health. Cadmium (Cd) is a toxic heavy metal that exists in the environment. Nevertheless, the mechanism of Mo and Cd on mitochondrial quality control are still indistinct. The objective of this research was to explore the effects of mitophagy on mitochondrial quality control via the FUNDC1-mediated by Mo and Cd in sheep kidney. Forty-eight 2-month-old sheep were stochastically divided into four groups, as shown below: control group, Mo [45 mg/kg body weight (BW)] group, Cd (1 mg/kg BW) group and Mo (45 mg/kg BW)+Cd (1 mg/kg BW) group, with 50 days feed technique. The results showed that Mo or/and Cd attract an unbalance of trace minerals and vacuoles and granular degeneration of renal tubular epithelial cells, and increase the number of mitophagosomes and vacuole-mitochondria and LC3 puncta and MDA and H2O2 contents, and decrease ATP content in the kidney. Moreover, Mo or/and Cd treatment could upregulate the mRNA levels of FUNDC1, LC3A, LC3B, PGAM5, DRP1, FIS1 and MFF, and the protein levels of FUNDC1, p-FUNDC1, LC3II/LC3I, DRP1, MFF and FIS1, downregulate the mRNA levels of MFN1, MFN2, OPA1, PGC-1α, SIRT1, SIRT3, FOXO1 and FOXO3, and the protein levels of MFN1, MFN2, OPA1 and PGC-1α. Notably, variations of above-mentioned factors in Mo and Cd group were more obvious than in Mo or Cd groups. Taken together, these results displayed that Mo and Cd co-treatment might induce mitochondrial quality control disorder via FUNDC1-mediated mitophagy in sheep kidney.

16.
Front Vet Sci ; 8: 752001, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34631868

RESUMEN

Previous studies have shown that melatonin can mitigate cryopreservation-induced mitochondrial dysfunction in oocytes; however, the underlying molecular mechanism remains unclear. The objective of the present study was to investigate whether melatonin can improve the mitochondrial function during in vitro maturation of vitrified-warmed mouse germinal vesicle (GV) oocytes by modulating phosphorylation of dynamin related protein 1 (Drp1). Vitrification/warming procedures resulted in the following: (1) After cryopreservation of mouse GV oocytes, the phosphorylation level of Drp1 at Ser616 (p-Drp1 Ser616) in metaphase II (MII) oocytes was increased (P < 0.05). Furthermore, the rates of in vitro maturation, cleavage and blastocyst formation after parthenogenetic activation were decreased (P < 0.05). (2) In MII oocytes, the expression levels of translocase of the mitochondrial outer membrane 20 (TOMM20), mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) content, and mRNA levels of mitochondrial biogenesis-related genes (Sirt1, Pgc-1α, Tfam) were all decreased (P < 0.05), and (3) Reactive oxygen species (ROS) level, early apoptosis level, Cytochrome C release and mRNA levels of pro-apoptotic related genes (Bax, Caspase9, Caspase3) in MII oocytes were all increased (P < 0.05). The results of this study further revealed that negative impacts of GV oocyte cryopreservation were mitigated by supplementation of warming and in vitro maturation media with 10-7mol /L melatonin or 2 x 10-5mol/L Mdivi-1 (Drp1 inhibitor). Therefore, we concluded that 10-7mol/L melatonin improved mitochondrial function, reduced oxidative stress and inhibited apoptosis by regulating phosphorylation of Drp1, thereby enhancing in vitro development of vitrified-warmed mouse GV oocytes.

17.
Anim Reprod Sci ; 233: 106850, 2021 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-34537566

RESUMEN

Melatonin (MT) is a potent antioxidant with useful applications in several fields. Due to the capacity to scavenge free radicals and enhance cellular endogenous antioxidant defenses, MT is widely used in sperm cryopreservation to protect against oxidative stress-induced damage in frozen-thawed sperm. In this article, there is a review of positive effects of MT supplementation in cryopreservation of sperm from domestic ruminants and swine. There is direct or indirect scavenging of free radicals, preventing lipid peroxidation (LPO), and reducing oxidative stress, therefore, protecting membrane and DNA integrity, enhancing post-thaw antioxidant and enzymatic functions to maintain mitochondrial functions and activity, and regulating ATP production and utilization leading to maintenance of sperm quality, motility, and viability. In addition, MT reportedly inhibits sperm apoptosis, potentially by enhancing sperm viability and modulating abundances of mRNA transcripts.

18.
BMC Genomics ; 22(1): 588, 2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344298

RESUMEN

BACKGROUND: Cryopreservation induces transcriptomic and epigenetic modifications that strongly impairs sperm quality and function, and thus decrease reproductive performance. N6-methyladenosine (m6A) RNA methylation varies in response to stress and has been implicated in multiple important biological processes, including post-transcriptional fate of mRNA, metabolism, and apoptosis. This study aimed to explore whether cryopreservation induces m6A modification of mRNAs associated with sperm energy metabolism, cryoinjuries, and freezability. RESULTS: The mRNA and protein expression of m6A modification enzymes were significantly dysregulated in sperm after cryopreservation. Furthermore, m6A peaks were mainly enriched in coding regions and near stop codons with classical RRACH motifs. The mRNAs containing highly methylated m6A peaks (fts vs. fs) were significantly associated with metabolism and gene expression, while the genes with less methylated m6A peaks were primarily involved in processes regulating RNA metabolism and transcription. Furthermore, the joint analysis of DMMGs and differentially expressed genes indicated that both of these play a vital role in sperm energy metabolism and apoptosis. CONCLUSIONS: Our study is the first to reveal the dynamic m6A modification of mRNAs in boar sperm during cryopreservation. These epigenetic modifications may affect mRNA expression and are closely related to sperm motility, apoptosis, and metabolism, which will provide novel insights into understanding of the cryoinjuries or freezability of boar sperm during cryopreservation.


Asunto(s)
Motilidad Espermática , Transcriptoma , Animales , Criopreservación , Masculino , ARN Mensajero/genética , Espermatozoides , Porcinos
19.
Animals (Basel) ; 11(8)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34438783

RESUMEN

Previously it was reported that melatonin could mitigate oxidative stress caused by oocyte cryopreservation; however, the underlying molecular mechanisms which cause this remain unclear. The objective was to explore whether melatonin could reduce oxidative stress during in vitro maturation of vitrified-warmed mouse germinal vesicle (GV) oocytes through the Nrf2 signaling pathway or its receptors. During in vitro maturation of vitrified-warmed mouse GV oocytes, there were decreases (p < 0.05) in the development rates of metaphase I (MI) oocytes and metaphase II (MII) and spindle morphology grades; increases (p < 0.05) in the reactive oxygen species (ROS) levels; and decreases (p < 0.05) in expressions of Nrf2 signaling pathway-related genes (Nrf2, SOD1) and proteins (Nrf2, HO-1). However, adding 10-7 mol/L melatonin to both the warming solution and maturation solutions improved (p < 0.05) these indicators. When the Nrf2 protein was specifically inhibited by Brusatol, melatonin did not increase development rates, spindle morphology grades, genes, or protein expressions, nor did it reduce vitrification-induced intracellular oxidative stress in GV oocytes during in vitro maturation. In addition, when melatonin receptors were inhibited by luzindole, the ability of melatonin to scavenge intracellular ROS was decreased, and the expressions of genes (Nrf2, SOD1) and proteins (Nrf2, HO-1) were not restored to control levels. Therefore, we concluded that 10-7 mol/L melatonin acted on the Nrf2 signaling pathway through its receptors to regulate the expression of genes (Nrf2, SOD1) and proteins (Nrf2, HO-1), and mitigate intracellular oxidative stress, thereby enhancing in vitro development of vitrified-warmed mouse GV oocytes.

20.
J Anim Sci Biotechnol ; 12(1): 84, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34266479

RESUMEN

BACKGROUND: This study investigated the effect of melatonin (MT) on cell cycle (G1/S/G2/M) of parthenogenetic zygotes developed from vitrified-warmed mouse metaphase II (MII) oocytes and elucidated the potential mechanism of MT action in the first cleavage of embryos. RESULTS: After vitrification and warming, oocytes were parthenogenetically activated (PA) and in vitro cultured (IVC). Then the spindle morphology and chromosome segregation in oocytes, the maternal mRNA levels of genes including Miss, Doc1r, Setd2 and Ythdf2 in activated oocytes, pronuclear formation, the S phase duration in zygotes, mitochondrial function at G1 phase, reactive oxygen species (ROS) level at S phase, DNA damage at G2 phase, early apoptosis in 2-cell embryos, cleavage and blastocyst formation rates were evaluated. The results indicated that the vitrification/warming procedures led to following perturbations 1) spindle abnormalities and chromosome misalignment, alteration of maternal mRNAs and delay in pronucleus formation, 2) decreased mitochondrial membrane potential (MMP) and lower adenosine triphosphate (ATP) levels, increased ROS production and DNA damage, G1/S and S/G2 phase transition delay, and delayed first cleavage, and 3) increased early apoptosis and lower levels of cleavage and blastocyst formation. Our results further revealed that such negative impacts of oocyte cryopreservation could be alleviated by supplementation of warming, recovery, PA and IVC media with 10- 9 mol/L MT before the embryos moved into the 2-cell stage of development. CONCLUSIONS: MT might promote cell cycle progression via regulation of MMP, ATP, ROS and maternal mRNA levels, potentially increasing the first cleavage of parthenogenetic zygotes developed from vitrified-warmed mouse oocytes and their subsequent development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...