Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pest Manag Sci ; 79(10): 3785-3795, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37237428

RESUMEN

BACKGROUND: The tea green leafhopper, Empoasca flavescens is the most important pest of tea plants in China. Mymarid attractants based on herbivore-induced plant volatiles (HIPVs) from leafhopper feeding and oviposition-induced plant volatiles (OIPVs) were formulated and tested as a novel pest control agent against the leafhopper in tea plantations. RESULTS: Results showed that two mymarid species, Stethynium empoascae and Schizophragma parvula, had a reducing effect on leafhopper populations. The HIPVs and OIPVs were identified and bioassayed to screen the key synomones showing strong attraction to the mymarids. They were formulated into different blends, of which Field Attractant 1, comprising linalool, methyl salicylate, (E)-2-hexenal, perillen and α-farnesene at ratio of 1:2:3:58:146 (20 mg/lure), showed the strongest attraction to the mymarids. In field trials with the attractant, the average parasitism rate (60.46 ± 23.71%) of tea leafhoppers by the two mymarids in the attractant-baited area was significantly higher than that (42.85 ± 19.24%) in the CK area. Also, the average leafhopper density (46 ± 30 per 80 tea shoots) in the attractant-baited area was significantly lower than that (110 ± 70 per 80 tea shoots) in the CK area. CONCLUSION: This study showed that a synthetic blend of key volatiles from HIPVs and OIPVs at an optimal ratio can be formulated into an attractant with the potential to attract and retain wild mymarid populations to suppress leafhopper populations in infested tea plantations, so as to reduce or avoid the spraying of insecticides. © 2023 Society of Chemical Industry.


Asunto(s)
Camellia sinensis , Hemípteros , Animales , Femenino , Control de Plagas , Feromonas/farmacología , Plantas ,
2.
New Phytol ; 237(6): 2388-2403, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36519219

RESUMEN

Apolygus lucorum (Meyer-Dur; Heteroptera: Miridae) is a major agricultural pest infesting crops, vegetables, and fruit trees. During feeding, A. lucorum secretes a plethora of effectors into its hosts to promote infestation. However, the molecular mechanisms of these effectors manipulating plant immunity are largely unknown. Here, we investigated the molecular mechanism underlying the effector Al106 manipulation of plant-insect interaction by RNA interference, electrical penetration graph, insect and pathogen bioassays, protein-protein interaction studies, and protein ubiquitination experiment. Expression of Al106 in Nicotiana benthamiana inhibits pathogen-associated molecular pattern-induced cell death and reactive oxygen species burst, and promotes insect feeding and plant pathogen infection. In addition, peptidyl-prolyl cis-trans isomerase (PPIase) activity of Al106 is required for its function to inhibit PTI.Al106 interacts with a plant U-box (PUB) protein, PUB33, from N. benthamiana and Arabidopsis thaliana. We also demonstrated that PUB33 is a positive regulator of plant immunity. Furthermore, an in vivo assay revealed that Al106 inhibits ubiquitination of NbPUB33 depending on PPIase activity. Our findings revealed that a novel cyclophilin effector may interact with plant PUB33 to suppress plant immunity and facilitate insect feeding in a PPIase activity-dependent manner.


Asunto(s)
Ciclofilinas , Heterópteros , Animales , Frutas , Árboles , Inmunidad de la Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...