Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
IEEE Trans Med Imaging ; PP2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869996

RESUMEN

To obtain high-quality positron emission tomography (PET) images while minimizing radiation exposure, numerous methods have been dedicated to acquiring standard-count PET (SPET) from low-count PET (LPET). However, current methods have failed to take full advantage of the different emphasized information from multiple domains, i.e., the sinogram, image, and frequency domains, resulting in the loss of crucial details. Meanwhile, they overlook the unique inner-structure of the sinograms, thereby failing to fully capture its structural characteristics and relationships. To alleviate these problems, in this paper, we proposed a prior knowledge-guided transformer-GAN that unites triple domains of sinogram, image, and frequency to directly reconstruct SPET images from LPET sinograms, namely PK-TriDo. Our PK-TriDo consists of a Sinogram Inner-Structure-based Denoising Transformer (SISD-Former) to denoise the input LPET sinogram, a Frequency-adapted Image Reconstruction Transformer (FaIR-Former) to reconstruct high-quality SPET images from the denoised sinograms guided by the image domain prior knowledge, and an Adversarial Network (AdvNet) to further enhance the reconstruction quality via adversarial training. Specifically tailored for the PET imaging mechanism, we injected a sinogram embedding module that partitions the sinograms by rows and columns to obtain 1D sequences of angles and distances to faithfully preserve the inner-structure of the sinograms. Moreover, to mitigate high-frequency distortions and enhance reconstruction details, we integrated global-local frequency parsers (GLFPs) into FaIR-Former to calibrate the distributions and proportions of different frequency bands, thus compelling the network to preserve high-frequency details. Evaluations on three datasets with different dose levels and imaging scenarios demonstrated that our PK-TriDo outperforms the state-of-the-art methods.

2.
iScience ; 27(1): 108608, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38174317

RESUMEN

Magnetic resonance imaging (MRI) is a widely used imaging modality in clinics for medical disease diagnosis, staging, and follow-up. Deep learning has been extensively used to accelerate k-space data acquisition, enhance MR image reconstruction, and automate tissue segmentation. However, these three tasks are usually treated as independent tasks and optimized for evaluation by radiologists, thus ignoring the strong dependencies among them; this may be suboptimal for downstream intelligent processing. Here, we present a novel paradigm, full-stack learning (FSL), which can simultaneously solve these three tasks by considering the overall imaging process and leverage the strong dependence among them to further improve each task, significantly boosting the efficiency and efficacy of practical MRI workflows. Experimental results obtained on multiple open MR datasets validate the superiority of FSL over existing state-of-the-art methods on each task. FSL has great potential to optimize the practical workflow of MRI for medical diagnosis and radiotherapy.

3.
Med Image Anal ; 91: 102983, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37926035

RESUMEN

Positron emission tomography (PET) scans can reveal abnormal metabolic activities of cells and provide favorable information for clinical patient diagnosis. Generally, standard-dose PET (SPET) images contain more diagnostic information than low-dose PET (LPET) images but higher-dose scans can also bring higher potential radiation risks. To reduce the radiation risk while acquiring high-quality PET images, in this paper, we propose a 3D multi-modality edge-aware Transformer-GAN for high-quality SPET reconstruction using the corresponding LPET images and T1 acquisitions from magnetic resonance imaging (T1-MRI). Specifically, to fully excavate the metabolic distributions in LPET and anatomical structural information in T1-MRI, we first use two separate CNN-based encoders to extract local spatial features from the two modalities, respectively, and design a multimodal feature integration module to effectively integrate the two kinds of features given the diverse contributions of features at different locations. Then, as CNNs can describe local spatial information well but have difficulty in modeling long-range dependencies in images, we further apply a Transformer-based encoder to extract global semantic information in the input images and use a CNN decoder to transform the encoded features into SPET images. Finally, a patch-based discriminator is applied to ensure the similarity of patch-wise data distribution between the reconstructed and real images. Considering the importance of edge information in anatomical structures for clinical disease diagnosis, besides voxel-level estimation error and adversarial loss, we also introduce an edge-aware loss to retain more edge detail information in the reconstructed SPET images. Experiments on the phantom dataset and clinical dataset validate that our proposed method can effectively reconstruct high-quality SPET images and outperform current state-of-the-art methods in terms of qualitative and quantitative metrics.


Asunto(s)
Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Humanos , Tomografía de Emisión de Positrones/métodos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Benchmarking , Procesamiento de Imagen Asistido por Computador/métodos
4.
Artículo en Inglés | MEDLINE | ID: mdl-37792650

RESUMEN

Spectral computed tomography (CT) is an emerging technology, that generates a multienergy attenuation map for the interior of an object and extends the traditional image volume into a 4-D form. Compared with traditional CT based on energy-integrating detectors, spectral CT can make full use of spectral information, resulting in high resolution and providing accurate material quantification. Numerous model-based iterative reconstruction methods have been proposed for spectral CT reconstruction. However, these methods usually suffer from difficulties such as laborious parameter selection and expensive computational costs. In addition, due to the image similarity of different energy bins, spectral CT usually implies a strong low-rank prior, which has been widely adopted in current iterative reconstruction models. Singular value thresholding (SVT) is an effective algorithm to solve the low-rank constrained model. However, the SVT method requires a manual selection of thresholds, which may lead to suboptimal results. To relieve these problems, in this article, we propose a sparse and low-rank unrolling network (SOUL-Net) for spectral CT image reconstruction, that learns the parameters and thresholds in a data-driven manner. Furthermore, a Taylor expansion-based neural network backpropagation method is introduced to improve the numerical stability. The qualitative and quantitative results demonstrate that the proposed method outperforms several representative state-of-the-art algorithms in terms of detail preservation and artifact reduction.

5.
Int J Neural Syst ; 33(11): 2350057, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37771298

RESUMEN

Radiotherapy is one of the leading treatments for cancer. To accelerate the implementation of radiotherapy in clinic, various deep learning-based methods have been developed for automatic dose prediction. However, the effectiveness of these methods heavily relies on the availability of a substantial amount of data with labels, i.e. the dose distribution maps, which cost dosimetrists considerable time and effort to acquire. For cancers of low-incidence, such as cervical cancer, it is often a luxury to collect an adequate amount of labeled data to train a well-performing deep learning (DL) model. To mitigate this problem, in this paper, we resort to the unsupervised domain adaptation (UDA) strategy to achieve accurate dose prediction for cervical cancer (target domain) by leveraging the well-labeled high-incidence rectal cancer (source domain). Specifically, we introduce the cross-attention mechanism to learn the domain-invariant features and develop a cross-attention transformer-based encoder to align the two different cancer domains. Meanwhile, to preserve the target-specific knowledge, we employ multiple domain classifiers to enforce the network to extract more discriminative target features. In addition, we employ two independent convolutional neural network (CNN) decoders to compensate for the lack of spatial inductive bias in the pure transformer and generate accurate dose maps for both domains. Furthermore, to enhance the performance, two additional losses, i.e. a knowledge distillation loss (KDL) and a domain classification loss (DCL), are incorporated to transfer the domain-invariant features while preserving domain-specific information. Experimental results on a rectal cancer dataset and a cervical cancer dataset have demonstrated that our method achieves the best quantitative results with [Formula: see text], [Formula: see text], and HI of 1.446, 1.231, and 0.082, respectively, and outperforms other methods in terms of qualitative assessment.


Asunto(s)
Neoplasias del Recto , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/radioterapia , Redes Neurales de la Computación
6.
Med Image Anal ; 89: 102902, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37482033

RESUMEN

Radiotherapy is a mainstay treatment for cancer in clinic. An excellent radiotherapy treatment plan is always based on a high-quality dose distribution map which is produced by repeated manual trial-and-errors of experienced experts. To accelerate the radiotherapy planning process, many automatic dose distribution prediction methods have been proposed recently and achieved considerable fruits. Nevertheless, these methods require certain auxiliary inputs besides CT images, such as segmentation masks of the tumor and organs at risk (OARs), which limits their prediction efficiency and application potential. To address this issue, we design a novel approach named as TransDose for dose distribution prediction that treats CT images as the unique input in this paper. Specifically, instead of inputting the segmentation masks to provide the prior anatomical information, we utilize a super-pixel-based graph convolutional network (GCN) to extract category-specific features, thereby compensating the network for the necessary anatomical knowledge. Besides, considering the strong continuous dependency between adjacent CT slices as well as adjacent dose maps, we embed the Transformer into the backbone, and make use of its superior ability of long-range sequence modeling to endow input features with inter-slice continuity message. To our knowledge, this is the first network that specially designed for the task of dose prediction from only CT images without ignoring necessary anatomical structure. Finally, we evaluate our model on two real datasets, and extensive experiments demonstrate the generalizability and advantages of our method.


Asunto(s)
Neoplasias , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos
7.
Int J Neural Syst ; 33(8): 2350043, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37420338

RESUMEN

Radiation therapy is a fundamental cancer treatment in the clinic. However, to satisfy the clinical requirements, radiologists have to iteratively adjust the radiotherapy plan based on experience, causing it extremely subjective and time-consuming to obtain a clinically acceptable plan. To this end, we introduce a transformer-embedded multi-task dose prediction (TransMTDP) network to automatically predict the dose distribution in radiotherapy. Specifically, to achieve more stable and accurate dose predictions, three highly correlated tasks are included in our TransMTDP network, i.e. a main dose prediction task to provide each pixel with a fine-grained dose value, an auxiliary isodose lines prediction task to produce coarse-grained dose ranges, and an auxiliary gradient prediction task to learn subtle gradient information such as radiation patterns and edges in the dose maps. The three correlated tasks are integrated through a shared encoder, following the multi-task learning strategy. To strengthen the connection of the output layers for different tasks, we further use two additional constraints, i.e. isodose consistency loss and gradient consistency loss, to reinforce the match between the dose distribution features generated by the auxiliary tasks and the main task. Additionally, considering many organs in the human body are symmetrical and the dose maps present abundant global features, we embed the transformer into our framework to capture the long-range dependencies of the dose maps. Evaluated on an in-house rectum cancer dataset and a public head and neck cancer dataset, our method gains superior performance compared with the state-of-the-art ones. Code is available at https://github.com/luuuwen/TransMTDP.


Asunto(s)
Aprendizaje , Humanos
8.
Artículo en Inglés | MEDLINE | ID: mdl-37310832

RESUMEN

Fatigued driving is a leading cause of traffic accidents, and accurately predicting driver fatigue can significantly reduce their occurrence. However, modern fatigue detection models based on neural networks often face challenges such as poor interpretability and insufficient input feature dimensions. This paper proposes a novel Spatial-Frequency-Temporal Network (SFT-Net) method for detecting driver fatigue using electroencephalogram (EEG) data. Our approach integrates EEG signals' spatial, frequency, and temporal information to improve recognition performance. We transform the differential entropy of five frequency bands of EEG signals into a 4D feature tensor to preserve these three types of information. An attention module is then used to recalibrate the spatial and frequency information of each input 4D feature tensor time slice. The output of this module is fed into a depthwise separable convolution (DSC) module, which extracts spatial and frequency features after attention fusion. Finally, long short-term memory (LSTM) is used to extract the temporal dependence of the sequence, and the final features are output through a linear layer. We validate the effectiveness of our model on the SEED-VIG dataset, and experimental results demonstrate that SFT-Net outperforms other popular models for EEG fatigue detection. Interpretability analysis supports the claim that our model has a certain level of interpretability. Our work addresses the challenge of detecting driver fatigue from EEG data and highlights the importance of integrating spatial, frequency, and temporal information. Codes are available at https://github.com/wangkejie97/SFT-Net.

9.
Bioinformatics ; 39(5)2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37140548

RESUMEN

MOTIVATION: Transcription factor (TF) binds to conservative DNA binding sites in different cellular environments and development stages by physical interaction with interdependent nucleotides. However, systematic computational characterization of the relationship between higher-order nucleotide dependency and TF-DNA binding mechanism in diverse cell types remains challenging. RESULTS: Here, we propose a novel multi-task learning framework HAMPLE to simultaneously predict TF binding sites (TFBS) in distinct cell types by characterizing higher-order nucleotide dependencies. Specifically, HAMPLE first represents a DNA sequence through three higher-order nucleotide dependencies, including k-mer encoding, DNA shape and histone modification. Then, HAMPLE uses the customized gate control and the channel attention convolutional architecture to further capture cell-type-specific and cell-type-shared DNA binding motifs and epigenomic languages. Finally, HAMPLE exploits the joint loss function to optimize the TFBS prediction for different cell types in an end-to-end manner. Extensive experimental results on seven datasets demonstrate that HAMPLE significantly outperforms the state-of-the-art approaches in terms of auROC. In addition, feature importance analysis illustrates that k-mer encoding, DNA shape, and histone modification have predictive power for TF-DNA binding in different cellular environments and are complementary to each other. Furthermore, ablation study, and interpretable analysis validate the effectiveness of the customized gate control and the channel attention convolutional architecture in characterizing higher-order nucleotide dependencies. AVAILABILITY AND IMPLEMENTATION: The source code is available at https://github.com/ZhangLab312/Hample.


Asunto(s)
ADN , Factores de Transcripción , Unión Proteica , Sitios de Unión , Factores de Transcripción/metabolismo , ADN/química , Programas Informáticos , Motivos de Nucleótidos
10.
Int J Neural Syst ; 33(6): 2350032, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37195808

RESUMEN

Facial expression recognition (FER) plays a vital role in the field of human-computer interaction. To achieve automatic FER, various approaches based on deep learning (DL) have been presented. However, most of them lack for the extraction of discriminative expression semantic information and suffer from the problem of annotation ambiguity. In this paper, we propose an elaborately designed end-to-end recognition network with contrastive learning and uncertainty-guided relabeling, to recognize facial expressions efficiently and accurately, as well as to alleviate the impact of annotation ambiguity. Specifically, a supervised contrastive loss (SCL) is introduced to promote inter-class separability and intra-class compactness, thus helping the network extract fine-grained discriminative expression features. As for the annotation ambiguity problem, we present an uncertainty estimation-based relabeling module (UERM) to estimate the uncertainty of each sample and relabel the unreliable ones. In addition, to deal with the padding erosion problem, we embed an amending representation module (ARM) into the recognition network. Experimental results on three public benchmarks demonstrate that our proposed method facilitates the recognition performance remarkably with 90.91% on RAF-DB, 88.59% on FERPlus and 61.00% on AffectNet, outperforming current state-of-the-art (SOTA) FER methods. Code will be available at http//github.com/xiaohu-run/fer_supCon.


Asunto(s)
Reconocimiento Facial , Humanos , Incertidumbre , Expresión Facial
11.
Artículo en Inglés | MEDLINE | ID: mdl-37022236

RESUMEN

Electroencephalography(EEG) signal has been recognized as an effective fatigue detection method, which can intuitively reflect the drivers' mental state. However, the research on multi-dimensional features in existing work could be much better. The instability and complexity of EEG signals will increase the difficulty of extracting data features. More importantly, most current work only treats deep learning models as classifiers. They ignored the features of different subjects learned by the model. Aiming at the above problems, this paper proposes a novel multi-dimensional feature fusion network, CSF-GTNet, based on time and space-frequency domains for fatigue detection. Specifically, it comprises Gaussian Time Domain Network (GTNet) and Pure Convolutional Spatial Frequency Domain Network (CSFNet). The experimental results show that the proposed method effectively distinguishes between alert and fatigue states. The accuracy rates are 85.16% and 81.48% on the self-made and SEED-VIG datasets, respectively, which are higher than the state-of-the-art methods. Moreover, we analyze the contribution of each brain region for fatigue detection through the brain topology map. In addition, we explore the changing trend of each frequency band and the significance between different subjects in the alert state and fatigue state through the heat map. Our research can provide new ideas in brain fatigue research and play a specific role in promoting the development of this field. The code is available on https://github.com/liio123/EEG_Fatigue.

12.
IEEE Trans Med Imaging ; 42(3): 850-863, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36327187

RESUMEN

Lowering the radiation dose in computed tomography (CT) can greatly reduce the potential risk to public health. However, the reconstructed images from dose-reduced CT or low-dose CT (LDCT) suffer from severe noise which compromises the subsequent diagnosis and analysis. Recently, convolutional neural networks have achieved promising results in removing noise from LDCT images. The network architectures that are used are either handcrafted or built on top of conventional networks such as ResNet and U-Net. Recent advances in neural network architecture search (NAS) have shown that the network architecture has a dramatic effect on the model performance. This indicates that current network architectures for LDCT may be suboptimal. Therefore, in this paper, we make the first attempt to apply NAS to LDCT and propose a multi-scale and multi-level memory-efficient NAS for LDCT denoising, termed M3NAS. On the one hand, the proposed M3NAS fuses features extracted by different scale cells to capture multi-scale image structural details. On the other hand, the proposed M3NAS can search a hybrid cell- and network-level structure for better performance. In addition, M3NAS can effectively reduce the number of model parameters and increase the speed of inference. Extensive experimental results on two different datasets demonstrate that the proposed M3NAS can achieve better performance and fewer parameters than several state-of-the-art methods. In addition, we also validate the effectiveness of the multi-scale and multi-level architecture for LDCT denoising, and present further analysis for different configurations of super-net.


Asunto(s)
Redes Neurales de la Computación , Tomografía Computarizada por Rayos X , Relación Señal-Ruido , Tomografía Computarizada por Rayos X/métodos
13.
Phys Med Biol ; 68(2)2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36535028

RESUMEN

Delineation of brain metastases (BMs) is a paramount step in stereotactic radiosurgery treatment. Clinical practice has specific expectation on BM auto-delineation that the method is supposed to avoid missing of small lesions and yield accurate contours for large lesions. In this study, we propose a novel coarse-to-fine framework, named detector-based segmentation (DeSeg), to incorporate object-level detection into pixel-wise segmentation so as to meet the clinical demand. DeSeg consists of three components: a center-point-guided single-shot detector to localize the potential lesion regions, a multi-head U-Net segmentation model to refine contours, and a data cascade unit to connect both tasks smoothly. Performance on tiny lesions is measured by the object-based sensitivity and positive predictive value (PPV), while that on large lesions is quantified by dice similarity coefficient (DSC), average symmetric surface distance (ASSD) and 95% Hausdorff distance (HD95). Besides, computational complexity is also considered to study the potential of method in real-time processing. This study retrospectively collected 240 BM patients with Gadolinium injected contrast-enhanced T1-weighted magnetic resonance imaging (T1c-MRI), which were randomly split into training, validating and testing datasets (192, 24 and 24 scans, respectively). The lesions in the testing dataset were further divided into two groups based on the volume size (smallS: ≤1.5 cc,N= 88; largeL: > 1.5 cc,N= 15). On average, DeSeg yielded a sensitivity of 0.91 and a PPV of 0.77 on S group, and a DSC of 0.86, an ASSD 0f 0.76 mm and a HD95 of 2.31 mm onLgroup. The results indicated that DeSeg achieved leading sensitivity and PPV for tiny lesions as well as segmentation metrics for large ones. After our clinical validation, DeSeg showed competitive segmentation performance while kept faster processing speed comparing with existing 3D models.


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Humanos , Estudios Retrospectivos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/secundario , Imagen por Resonancia Magnética/métodos , Radiocirugia/métodos
14.
Comput Biol Med ; 149: 105993, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36057196

RESUMEN

Transcription factors (TFs) can regulate gene expression by recognizing specific cis-regulatory elements in DNA sequences. TF-DNA binding prediction has become a fundamental step in comprehending the underlying cis-regulation mechanism. Since a particular genome region is bound depending on multiple features, such as the arrangement of nucleotides, DNA shape, and an epigenetic mechanism, many researchers attempt to develop computational methods to predict TF binding sites (TFBSs) based on various genomic features. This paper provides a comprehensive compendium to better understand TF-DNA binding from genomic features. We first summarize the commonly used datasets and data processing manners. Subsequently, we classify current deep learning methods in TFBS prediction according to their utilized genomic features and analyze each technique's merit and weakness. Furthermore, we illustrate the functional consequences characterization of TF-DNA binding by prioritizing noncoding variants in identified motif instances. Finally, the challenges and opportunities of deep learning in TF-DNA binding prediction are discussed. This survey can bring valuable insights for researchers to study the modeling of TF-DNA binding.


Asunto(s)
Biología Computacional , Genómica , Sitios de Unión , Biología Computacional/métodos , ADN/química , ADN/genética , Nucleótidos/metabolismo , Unión Proteica , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Int J Neural Syst ; 32(9): 2250043, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35912583

RESUMEN

A practical problem in supervised deep learning for medical image segmentation is the lack of labeled data which is expensive and time-consuming to acquire. In contrast, there is a considerable amount of unlabeled data available in the clinic. To make better use of the unlabeled data and improve the generalization on limited labeled data, in this paper, a novel semi-supervised segmentation method via multi-task curriculum learning is presented. Here, curriculum learning means that when training the network, simpler knowledge is preferentially learned to assist the learning of more difficult knowledge. Concretely, our framework consists of a main segmentation task and two auxiliary tasks, i.e. the feature regression task and target detection task. The two auxiliary tasks predict some relatively simpler image-level attributes and bounding boxes as the pseudo labels for the main segmentation task, enforcing the pixel-level segmentation result to match the distribution of these pseudo labels. In addition, to solve the problem of class imbalance in the images, a bounding-box-based attention (BBA) module is embedded, enabling the segmentation network to concern more about the target region rather than the background. Furthermore, to alleviate the adverse effects caused by the possible deviation of pseudo labels, error tolerance mechanisms are also adopted in the auxiliary tasks, including inequality constraint and bounding-box amplification. Our method is validated on ACDC2017 and PROMISE12 datasets. Experimental results demonstrate that compared with the full supervision method and state-of-the-art semi-supervised methods, our method yields a much better segmentation performance on a small labeled dataset. Code is available at https://github.com/DeepMedLab/MTCL.


Asunto(s)
Curriculum , Aprendizaje Automático Supervisado , Curaduría de Datos/métodos , Curaduría de Datos/normas , Conjuntos de Datos como Asunto/normas , Conjuntos de Datos como Asunto/provisión & distribución , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático Supervisado/clasificación , Aprendizaje Automático Supervisado/estadística & datos numéricos , Aprendizaje Automático Supervisado/tendencias
16.
Med Image Anal ; 79: 102447, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35509136

RESUMEN

Due to the difficulty in accessing a large amount of labeled data, semi-supervised learning is becoming an attractive solution in medical image segmentation. To make use of unlabeled data, current popular semi-supervised methods (e.g., temporal ensembling, mean teacher) mainly impose data-level and model-level consistency on unlabeled data. In this paper, we argue that in addition to these strategies, we could further utilize auxiliary tasks and consider task-level consistency to better excavate effective representations from unlabeled data for segmentation. Specifically, we introduce two auxiliary tasks, i.e., a foreground and background reconstruction task for capturing semantic information and a signed distance field (SDF) prediction task for imposing shape constraint, and explore the mutual promotion effect between the two auxiliary and the segmentation tasks based on mean teacher architecture. Moreover, to handle the potential bias of the teacher model caused by annotation scarcity, we develop a tripled-uncertainty guided framework to encourage the three tasks in the student model to learn more reliable knowledge from the teacher. When calculating uncertainty, we propose an uncertainty weighted integration (UWI) strategy for yielding the segmentation predictions of the teacher. In addition, following the advance of unsupervised learning in leveraging the unlabeled data, we also incorporate a contrastive learning based constraint to help the encoders extract more distinct representations to promote the medical image segmentation performance. Extensive experiments on the public 2017 ACDC dataset and the PROMISE12 dataset have demonstrated the effectiveness of our method.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Aprendizaje Automático Supervisado , Humanos , Incertidumbre
17.
Phys Med Biol ; 67(8)2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35313298

RESUMEN

Objective.Currently, the field of low-dose CT (LDCT) denoising is dominated by supervised learning based methods, which need perfectly registered pairs of LDCT and its corresponding clean reference image (normal-dose CT). However, training without clean labels is more practically feasible and significant, since it is clinically impossible to acquire a large amount of these paired samples. In this paper, a self-supervised denoising method is proposed for LDCT imaging.Approach.The proposed method does not require any clean images. In addition, the perceptual loss is used to achieve data consistency in feature domain during the denoising process. Attention blocks used in decoding phase can help further improve the image quality.Main results.In the experiments, we validate the effectiveness of our proposed self-supervised framework and compare our method with several state-of-the-art supervised and unsupervised methods. The results show that our proposed model achieves competitive performance in both qualitative and quantitative aspects to other methods.Significance.Our framework can be directly applied to most denoising scenarios without collecting pairs of training data, which is more flexible for real clinical scenario.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Tomografía Computarizada por Rayos X , Algoritmos , Proyectos de Investigación , Relación Señal-Ruido , Tomografía Computarizada por Rayos X/métodos
18.
Brief Bioinform ; 23(3)2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35272347

RESUMEN

Multiple sequence alignment (MSA) is an essential cornerstone in bioinformatics, which can reveal the potential information in biological sequences, such as function, evolution and structure. MSA is widely used in many bioinformatics scenarios, such as phylogenetic analysis, protein analysis and genomic analysis. However, MSA faces new challenges with the gradual increase in sequence scale and the increasing demand for alignment accuracy. Therefore, developing an efficient and accurate strategy for MSA has become one of the research hotspots in bioinformatics. In this work, we mainly summarize the algorithms for MSA and its applications in bioinformatics. To provide a structured and clear perspective, we systematically introduce MSA's knowledge, including background, database, metric and benchmark. Besides, we list the most common applications of MSA in the field of bioinformatics, including database searching, phylogenetic analysis, genomic analysis, metagenomic analysis and protein analysis. Furthermore, we categorize and analyze classical and state-of-the-art algorithms, divided into progressive alignment, iterative algorithm, heuristics, machine learning and divide-and-conquer. Moreover, we also discuss the challenges and opportunities of MSA in bioinformatics. Our work provides a comprehensive survey of MSA applications and their relevant algorithms. It could bring valuable insights for researchers to contribute their knowledge to MSA and relevant studies.


Asunto(s)
Algoritmos , Biología Computacional , Aprendizaje Automático , Filogenia , Alineación de Secuencia
19.
Artif Intell Med ; 125: 102254, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35241260

RESUMEN

As an effective way of routine prenatal diagnosis, ultrasound (US) imaging has been widely used recently. Biometrics obtained from the fetal segmentation shed light on fetal health monitoring. However, the segmentation in US images has strict requirements for sonographers on accuracy, making this task quite time-consuming and tedious. In this paper, we use DeepLabv3+ as the backbone and propose an Integrated Semantic and Spatial Information of Multi-level Features (ISSMF) based network to achieve the automatic and accurate segmentation of four parts of the fetus in US images while most of the previous works only segment one or two parts. Our contributions are threefold. First, to incorporate semantic information of high-level features and spatial information of low-level features of US images, we introduce a multi-level feature fusion module to integrate the features at different scales. Second, we propose to leverage the content-aware reassembly of features (CARAFE) upsampler to deeply explore the semantic and spatial information of multi-level features. Third, in order to alleviate performance degradation caused by batch normalization (BN) when batch size is small, we use group normalization (GN) instead. Experiments on four parts of fetus in US images show that our method outperforms the U-Net, DeepLabv3+ and the U-Net++ and the biometric measurements based on our segmentation results are pretty close to those derived from sonographers with ten-year work experience.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Femenino , Humanos , Embarazo , Semántica , Ultrasonografía , Ultrasonografía Prenatal
20.
IEEE Trans Med Imaging ; 41(8): 2144-2156, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35235505

RESUMEN

Spectral computed tomography (CT) reconstructs images from different spectral data through photon counting detectors (PCDs). However, due to the limited number of photons and the counting rate in the corresponding spectral segment, the reconstructed spectral images are usually affected by severe noise. In this paper, we propose a fourth-order nonlocal tensor decomposition model for spectral CT image reconstruction (FONT-SIR). To maintain the original spatial relationships among similar patches and improve the imaging quality, similar patches without vectorization are grouped in both spectral and spatial domains simultaneously to form the fourth-order processing tensor unit. The similarity of different patches is measured with the cosine similarity of latent features extracted using principal component analysis (PCA). By imposing the constraints of the weighted nuclear and total variation (TV) norms, each fourth-order tensor unit is decomposed into a low-rank component and a sparse component, which can efficiently remove noise and artifacts while preserving the structural details. Moreover, the alternating direction method of multipliers (ADMM) is employed to solve the decomposition model. Extensive experimental results on both simulated and real data sets demonstrate that the proposed FONT-SIR achieves superior qualitative and quantitative performance compared with several state-of-the-art methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA