Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(2): e2302037, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38015024

RESUMEN

Mono-methylation of histone H3 on Lys 4 (H3K4me1), which is catalyzed by histone-lysine N-methyltransferase 2D (KMT2D), serves as an important epigenetic regulator in transcriptional control. In this study, the authors identify early B-cell factor 2 (EBF2) as a binding protein of H3K4me1. Combining analyses of RNA-seq and ChIP-seq data, the authors further identify killin (KLLN) as a transcriptional target of KMT2D and EBF2 in pancreatic ductal adenocarcinoma (PDAC) cells. KMT2D-dependent H3K4me1 and EBF2 are predominantly over-lapped proximal to the transcription start site (TSS) of KLLN gene. Comprehensive functional assays show that KMT2D and EBF2 cooperatively inhibit PDAC cells proliferation, migration, and invasion through upregulating KLLN. Such inhibition on PDAC progression is also achieved through increasing H3K4me1 level by GSK-LSD1, a selective inhibitor of lysine-specific demethylase 1 (LSD1). Taken together, these findings reveal a new mechanism underlying PDAC progression and provide potential therapeutic targets for PDAC treatment.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/genética , Regulación de la Expresión Génica , Histona Demetilasas/genética , Histonas/genética , Neoplasias Pancreáticas/genética
2.
iScience ; 26(11): 108148, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37915611

RESUMEN

O-GlcNAc transferase (OGT) acts in the development of various cancers, but its role in clear cell renal cell carcinoma (ccRCC) remains unclear. In this study, we found that OGT was upregulated in ccRCC and this upregulation was associated with a worse survival. Moreover, OGT promoted the proliferation, clone formation, and invasion of VHL-mutated ccRCC cells. Mechanistically, OGT increased the protein level of hypoxia-inducible factor-2α (HIF-2α) (the main driver of the clear cell phenotype) by repressing ubiquitin‒proteasome system-mediated degradation. Interestingly, the OGT/HIF-2α axis conferred ccRCC a high sensitivity to ferroptosis. In conclusion, OGT promotes the progression of VHL-mutated ccRCC by inhibiting the degradation of HIF-2α, and agents that can modulate the OGT/HIF-2α axis may exert therapeutic effects on mutated VHL ccRCC.

3.
Cell Rep ; 42(8): 112945, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37542723

RESUMEN

Solid tumors have developed robust ferroptosis resistance. The mechanism underlying ferroptosis resistance regulation in solid tumors, however, remains elusive. Here, we report that the hypoxic tumor microenvironment potently promotes ferroptosis resistance in solid tumors in a hypoxia-inducible factor 1α (HIF-1α)-dependent manner. In combination with HIF-2α, which promotes tumor ferroptosis under hypoxia, HIF-1α is the main driver of hypoxia-induced ferroptosis resistance. Mechanistically, HIF-1α-induced lactate contributes to ferroptosis resistance in a pH-dependent manner that is parallel to the classical SLC7A11 and FSP1 systems. In addition, HIF-1α also enhances transcription of SLC1A1, an important glutamate transporter, and promotes cystine uptake to promote ferroptosis resistance. In support of the role of hypoxia in ferroptosis resistance, silencing HIF-1α sensitizes mouse solid tumors to ferroptosis inducers. In conclusion, our results reveal a mechanism by which hypoxia drives ferroptosis resistance and identify the combination of hypoxia alleviation and ferroptosis induction as a promising therapeutic strategy for solid tumors.


Asunto(s)
Transportador 3 de Aminoácidos Excitadores , Ferroptosis , Subunidad alfa del Factor 1 Inducible por Hipoxia , Neoplasias , Animales , Ratones , Hipoxia de la Célula , Línea Celular Tumoral , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ácido Láctico , Neoplasias/genética , Neoplasias/patología , Microambiente Tumoral , Transportador 3 de Aminoácidos Excitadores/genética
4.
Mol Cancer ; 21(1): 140, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35773744

RESUMEN

BACKGROUND: Aberrant expression of circular RNAs (circRNAs) contributes to the initiation and progression of human malignancies, but the underlying mechanisms remain largely elusive. METHODS: High-throughput sequencing was performed to screen aberrantly expressed circRNAs or miRNAs in colorectal cancer (CRC) and adjacent normal tissues. A series of gain- and loss-of-function studies were conducted to evaluate the biological behaviors of CRC cells. RNA pulldown, mass spectrometry, RIP, qRT-PCR, Western blot, luciferase reporter assays and MeRIP-seq analysis were further applied to dissect the detailed mechanisms. RESULTS: Here, a novel circRNA named circEZH2 (hsa_circ_0006357) was screened out by RNA-seq in CRC tissues, whose expression is closely related to the clinicpathological characteristics and prognosis of CRC patients. Biologically, circEZH2 facilitates the proliferation and migration of CRC cells in vitro and in vivo. Mechanistically, circEZH2 interacts with m6A reader IGF2BP2 and blocks its ubiquitination-dependent degradation. Meanwhile, circEZH2 could serve as a sponge of miR-133b, resulting in the upregulation of IGF2BP2. Particularly, circEZH2/IGF2BP2 enhances the stability of CREB1 mRNA, thus aggravating CRC progression. CONCLUSIONS: Our findings not only reveal the pivotal roles of circEZH2 in modulating CRC progression, but also advocate for attenuating circEZH2/miR-133b/IGF2BP2/ CREB1 regulatory axis to combat CRC.


Asunto(s)
Neoplasias Colorrectales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , MicroARNs , ARN Circular , Proteínas de Unión al ARN , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
5.
Mol Cancer ; 21(1): 119, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35624451

RESUMEN

BACKGROUND: Prostate cancer (PCa) is the most frequently diagnosed malignancy in men, and its mechanism remains poorly understood. Therefore, it is urgent to discover potential novel diagnostic biomarkers and therapeutic targets that can potentially facilitate the development of efficient anticancer strategies. METHODS: A series of functional in vitro and in vivo experiments were conducted to evaluate the biological behaviors of PCa cells. RNA pulldown, Western blot, luciferase reporter, immunohistochemistry and chromatin immunoprecipitation assays were applied to dissect the detailed underlying mechanisms. High-throughput sequencing was performed to screen for differentially expressed circRNAs in PCa and adjacent normal tissues. RESULTS: Upregulation of protein arginine methyltransferase 5 (PRMT5) is associated with poor progression-free survival and the activation of multiple signaling pathways in PCa. PRMT5 inhibits the transcription of CAMK2N1 by depositing the repressive histone marks H4R3me2s and H3R8me2s on the proximal promoter region of CAMK2N1, and results in malignant progression of PCa both in vitro and in vivo. Moreover, the expression of circSPON2, a candidate circRNA in PCa tissues identified by RNA-seq, was found to be associated with poor clinical outcomes in PCa patients. Further results showed that circSPON2 induced PCa cell proliferation and migration, and that the circSPON2-induced effects were counteracted by miR-331-3p. Particularly, circSPON2 acted as a competitive endogenous RNA (ceRNA) of miR-331-3p to attenuate the repressive effects of miR-331-3p on its downstream target PRMT5. CONCLUSIONS: Our findings showed that the epigenetic regulator PRMT5 aggravates PCa progression by inhibiting the transcription of CAMK2N1 and is modulated by the circSPON2/miR-331-3p axis, which may serve as a potential therapeutic target for patients with aggressive PCa.


Asunto(s)
MicroARNs , Neoplasias de la Próstata , Línea Celular Tumoral , Epigénesis Genética , Humanos , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteínas/metabolismo , ARN Circular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA