Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Phytomedicine ; 126: 155073, 2024 Apr.
Article En | MEDLINE | ID: mdl-38417244

BACKGROUND: Cervical spondylotic myelopathy (CSM) is a degenerative pathology that affects both upper and lower extremity mobility and sensory function, causing significant pressure on patients and society. Prior research has suggested that ginsenosides may have neuroprotective properties in central nervous system diseases. However, the efficacy and mechanism of ginsenosides for CSM have yet to be investigated. PURPOSE: This study aims to analyze the composition of ginsenosides using UPLC-MS, identify the underlying mechanism of ginsenosides in treating CSM using network pharmacology, and subsequently confirm the efficacy and mechanism of ginsenosides in rats with chronic spinal cord compression. METHODS: UPLC-Q-TOF-MS was utilized to obtain mass spectrum data of ginsenoside samples. The chemical constituents of the samples were analyzed by consulting literature reports and relevant databases. Ginsenoside and CSM targets were obtained from the TCMSP, OMIM, and GeneCards databases. GO and KEGG analyses were conducted, and a visualization network of ginsenosides-compounds-key targets-pathways-CSM was constructed, along with molecular docking of key bioactive compounds and targets, to identify the signaling pathways and proteins associated with the therapeutic effects of ginsenosides on CSM. Chronic spinal cord compression rats were intraperitoneally injected with ginsenosides (50 mg/kg and 150 mg/kg) and methylprednisolone for 28 days, and motor function was assessed to investigate the therapeutic efficacy of ginsenosides for CSM. The expression of proteins associated with TNF, IL-17, TLR4/MyD88/NF-κB, and NLRP3 signaling pathways was assessed by immunofluorescence staining and western blotting. RESULTS: Using UPLC-Q-TOF-MS, 37 compounds were identified from ginsenoside samples. Furthermore, ginsenosides-compounds-key targets-pathways-CSM visualization network indicated that ginsenosides may modulate the PI3K-Akt signaling pathway, TNF signaling pathway, MAPK signaling pathway, IL-17 signaling pathway, Toll-like receptor signaling pathway and Apoptosis by targeting AKT1, TNF, MAPK1, CASP3, IL6, and IL1B, exerting a therapeutic effect on CSM. By attenuating neuroinflammation through the TNF, IL-17, TLR4/MyD88/NF-κB, and MAPK signaling pathways, ginsenosides restored the motor function of rats with CSM, and ginsenosides 150 mg/kg showed better effect. This was achieved by reducing the phosphorylation of NF-κB and the activation of the NLRP3 inflammasome. CONCLUSIONS: The results of network pharmacology indicate that ginsenosides can inhibit neuroinflammation resulting from spinal cord compression through multiple pathways and targets. This finding was validated through in vivo tests, which demonstrated that ginsenosides can reduce neuroinflammation by inhibiting NLRP3 inflammasomes via multiple signaling pathways, additionally, it should be noted that 150 mg/kg was a relatively superior dose. This study is the first to verify the intrinsic molecular mechanism of ginsenosides in treating CSM by combining pharmacokinetics, network pharmacology, and animal experiments. The findings can provide evidence for subsequent clinical research and drug development.


Animal Experimentation , Drugs, Chinese Herbal , Ginsenosides , Spinal Cord Compression , Spinal Cord Diseases , Humans , Animals , Rats , Ginsenosides/pharmacology , Interleukin-17 , NLR Family, Pyrin Domain-Containing 3 Protein , NF-kappa B , Chromatography, Liquid , Molecular Docking Simulation , Myeloid Differentiation Factor 88 , Network Pharmacology , Neuroinflammatory Diseases , Phosphatidylinositol 3-Kinases , Toll-Like Receptor 4 , Tandem Mass Spectrometry , Drugs, Chinese Herbal/pharmacology
2.
Front Neurosci ; 17: 1255755, 2023.
Article En | MEDLINE | ID: mdl-37881327

Spinal cord injury (SCI) is a catastrophic condition with few therapeutic options. Astaxanthin (AST), a natural nutritional supplement with powerful antioxidant activities, is finding its new application in the field of SCI. Here, we performed a systematic review to assess the neurological roles of AST in rats following SCI, and assessed the potential for clinical translation. Searches were conducted on PubMed, Embase, Cochrane Library, the Web of Science, China National Knowledge Infrastructure, WanFang data, Vip Journal Integration Platform, and SinoMed databases. Animal studies that evaluated the neurobiological roles of AST in a rat model of SCI were included. A total of 10 articles were included; most of them had moderate-to-high methodological quality, while the overall quality of evidence was not high. Generally, the meta-analyses revealed that rats treated with AST exhibited an increased Basso, Beattie, and Bresnahan (BBB) score compared with the controls, and the weighted mean differences (WMDs) between those two groups showed a gradual upward trend from days 7 (six studies, n = 88, WMD = 2.85, 95% CI = 1.83 to 3.87, p < 0.00001) to days 28 (five studies, n = 76, WMD = 6.42, 95% CI = 4.29 to 8.55, p < 0.00001) after treatment. AST treatment was associated with improved outcomes in spared white matter area, motor neuron survival, and SOD and MDA levels. Subgroup analyses indicated there were differences in the improvement of BBB scores between distinct injury types. The trial sequential analysis then firmly proved that AST could facilitate the locomotor recovery of rats following SCI. In addition, this review suggested that AST could modulate oxidative stress, neuroinflammation, neuron loss, and autophagy via multiple signaling pathways for treating SCI. Collectively, with a protective effect, good safety, and a systematic action mechanism, AST is a promising candidate for future clinical trials of SCI. Nonetheless, in light of the limitations of the included studies, larger and high-quality studies are needed for verification.

3.
Syst Rev ; 12(1): 177, 2023 09 26.
Article En | MEDLINE | ID: mdl-37752580

BACKGROUND: Spinal cord injury (SCI) is one of the most disabling neurological conditions, afflicting thousands of human beings. Edaravone, a well-known reactive oxygen species scavenger, is expanding its new scope in field of SCI. The objective of this systematic review is to determine the neuroprotective effects and discuss the underlying mechanism of edaravone in management of SCI. METHODS: The systematic review will include the controlled studies evaluating the neurological roles of edaravone on experiment rat models following SCI. The primary outcome will be the 21-point Basso, Beattie, and Bresnahan locomotor rating scale. The secondary outcomes will include the preservation of white matter areas and malondialdehyde levels. Two researchers will independently search PubMed, Embase, Web of Science, Scopus and Cochrane Library from their inception date. Following study selection, data extraction, and assessment of methodological quality in included studies using the SYRCLE's RoB tool, data from eligible studies will be pooled and analyzed using random-effects models with RevMan 5.3 software. In case of sufficient data, subgroup analyses with respect to species, age, gender, injury characteristics, or administration details will be carried out to explore the factors modifying efficacy of edaravone. For exploring the appropriate dose of edaravone, a network meta-analysis approach will be conducted based on the Bayesian method. Importantly, the proposed mechanisms and changes of related molecules will be also extracted from included studies for comprehensively investigating the mechanisms underlying the neuroprotective effects of edaravone. DISCUSSION: In this study, we aim to quantitatively analyze the role of edaravone in locomotor recovery and tissue damage in SCI rat model. The efficacy of edaravone in distinct scenarios will be investigated by subgroup analyses, and we expect to predict the candidate dose that offers a superior treatment effect using network meta-analyses. Moreover, a comprehensive framework regarding the neuroprotective mechanisms behind edaravone will be constructed via a combination of systematic and traditional review. This study will bring implications for future preclinical studies and clinical applications of SCI. Nonetheless, in light of the anticipated limitations in animal experimental design and methodological quality, the results in this review should be interpreted with caution.


Neuroprotective Agents , Spinal Cord Injuries , Rats , Humans , Animals , Edaravone/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Bayes Theorem , Disease Models, Animal , Systematic Reviews as Topic , Meta-Analysis as Topic , Spinal Cord Injuries/drug therapy , Review Literature as Topic
4.
Nutr Neurosci ; : 1-13, 2023 Sep 10.
Article En | MEDLINE | ID: mdl-37691351

CONTEXT: Spinal cord injury (SCI) is a potentially fatal neurological disease with severe complications and a high disability rate. An increasing number of animal experimental studies support the therapeutic effect of quercetin, which is a natural anti-inflammatory and antioxidant bioflavonoid. OBJECTIVE: This paper reviewed the therapeutic effect of quercetin on a rat SCI model and summarized the relevant mechanistic research. DATA SOURCES: PubMed, EMBASE, Web of Science, Science Direct, WanFang Data, SinoMed databases, the China National Knowledge Infrastructure, and the Vip Journal Integration Platform were searched from their inception to April 2023 for animal experiments applying quercetin to treat SCI. STUDY SELECTION: Based on the PICOS criteria, a total of 18 eligible studies were included, of which 14 were high quality. RESULTS: In this study, there was a gradual increase in effect based on the Basso, Beattie, and Bresnahan (BBB) score after three days (p < 0.0001). Furthermore, gender differences also appeared in the efficacy of quercetin; males performed better than females (p = 0.008). Quercetin was also associated with improved inclined plane test score (p = 0.008). In terms of biochemical indicators, meta-analysis showed that MDA (p < 0.0001) and MPO (p = 0.0002) were significantly reduced after quercetin administration compared with the control group, and SOD levels were increased (p = 0.004). Mechanistically, quercetin facilitates the inhibition of oxidative stress, inflammation, autophagy and apoptosis that occur after SCI. CONCLUSIONS: Generally, this systematic review suggests that quercetin has a neuroprotective effect on SCI.

5.
Immun Inflamm Dis ; 11(9): e1002, 2023 09.
Article En | MEDLINE | ID: mdl-37773697

OBJECTIVE: Allergic rhinitis (AR) is a common allergic disorder, afflicting thousands of human beings. Aberrant mitochondrial dynamics are important pathological elements for various immune cell dysfunctions and allergic diseases. However, the connection between mitochondrial dynamics and AR remains poorly understood. This study aimed to determine whether mitochondrial dynamics influence the inflammatory response in AR. METHODS: In the present study, we established a murine model of AR by sensitization with ovalbumin (OVA). Then, we investigated the mitochondrial morphology in mice with AR by transmission electron microscopy and confocal fluorescence microscopy, and evaluated the role of Mdivi-1 (an inhibitor of mitochondrial fission) on allergic symptoms, inflammatory responses, allergic-related signals, and reactive oxygen species formation. RESULTS: There was a notable enhancement in mitochondrial fragmentation in the nasal mucosa of mice following OVA stimulation, whereas Mdivi-1 prevented aberrant mitochondrial morphology. Indeed, Mdivi-1 alleviated the rubbing and sneezing responses in OVA-sensitized mice. Compared with vehicle-treated ones, mice treated with Mdivi-1 exhibited a reduction in interleukin (IL)-4, IL-5, and specific IgE levels in both serum and nasal lavage fluid, and shown an amelioration in inflammatory response of nasal mucosa. Meanwhile, Mdivi-1 treatment was associated with a suppression in JAK2 and STAT6 activation and reactive oxygen species generation, which act as important signaling for allergic response. CONCLUSION: Our findings reveal mitochondrial dynamics modulate the allergic responses in AR. Mitochondrial dynamics may represent a promising target for the treatment of AR.


Mitochondrial Dynamics , Rhinitis, Allergic , Humans , Animals , Mice , Disease Models, Animal , Reactive Oxygen Species , Immunoglobulin E , Inflammation
6.
J Pineal Res ; 74(4): e12859, 2023 May.
Article En | MEDLINE | ID: mdl-36732085

Cervical spondylotic myelopathy (CSM) refers to a chronic injury of the cervical cord caused by cervical intervertebral disc degeneration. Endoplasmic reticulum (ER) homeostasis is essential to counteract neuronal apoptosis. ER stress, an integral part of ER homeostasis, was observed in a rat model of chronic cervical cord compression in our previous study. However, the correlation between ER homeostasis and CSM remains unknown. The antioxidant melatonin is known to exert therapeutic effects in acute spinal cord injury, but the specific effects and their potential mechanisms in the pathological processes of CSM require further exploration. The present study hypothesized that ER homeostasis is essential for neuronal apoptosis in the CSM and that melatonin maintains this homeostasis. The results showed that ER stress led to neuronal apoptosis in rats with chronic cervical cord compression. Conversely, melatonin attenuates protein kinase R-like ER kinase-eukaryotic initiation factor 2α-C/EBP-homologous protein, inositol-requiring enzyme 1, and transcription factor 6 signaling pathways to release ER stress and prevents Bax translocation to the mitochondrion, thereby promoting motor recovery and protecting neurons in vivo. It also rescued primary rat cortical neurons from ER stress-induced glutamate toxicity in vitro. Moreover, melatonin remodels the ER morphology and restores homeostasis via ER-phagy in injured neurons. FAM134B, CCPG1, RTN3, and Sec. 62 are four known ER-phagy receptors. In this study, Sec. 62 was identified as a key melatonin factor in promoting ER-phagy and restoring ER homeostasis in damaged neurons in vivo and in vitro. In conclusion, melatonin suppresses neuronal apoptosis by reducing ER stress and promoting ER-phagy to restore ER morphology and homeostasis. The current results suggested that melatonin is a promising treatment for CSM owing to its restorative effect on ER homeostasis; however, well-designed randomized controlled trials must be carried out to further investigate its clinical effects.


Cervical Cord , Melatonin , Rats , Animals , Melatonin/pharmacology , Melatonin/metabolism , Endoplasmic Reticulum Stress , Apoptosis , Neurons/metabolism , Endoplasmic Reticulum/metabolism , Homeostasis
7.
Cell Biol Toxicol ; 39(3): 907-928, 2023 06.
Article En | MEDLINE | ID: mdl-35028790

Cervical spondylotic myelopathy (CSM) is a clinically symptomatic entity arising from the spinal cord compression by degenerative diseases. Although endoplasmic reticulum (ER) stress has been commonly observed in several neurodegenerative diseases, the relationship between ER stress and CSM remains unknown. Shikonin is known to protect PC12 by inhibiting apoptosis in vitro. This study hypothesised that ER stress was vital in neuronal apoptosis in CSM. Shikonin might inhibit such responses by regulating ER stress through the protein kinase-like ER kinase-eukaryotic translation initiation factor 2 α-subunit-C/EBP homologous protein (PERK-eIF2α-CHOP) signalling pathway. Thus, the aim of this study was evaluating the neuroprotective effect of shikonin in rats with double-level chronic cervical cord compression, as well as primary rat cortical neurons with glutamate-induced neurotoxicity. The result showed that ER stress-related upregulation of PERK-eIF2α-CHOP resulted in rat neuronal apoptosis after chronic cervical cord compression; then, shikonin promoted motor recovery and inhibited neuronal apoptosis by attenuating PERK-eIF2α-CHOP and prevented Bax translocation from cytoplasm to mitochondrion induced by CHOP of neurons in rats with chronic compression. Also, it was found that shikonin could protect rat primary cortical neuron against glutamate toxicity by regulating ER stress through the PERK-eIF2α-CHOP pathway in vitro. In conclusion, shikonin might inhibit neuronal apoptosis by regulating ER stress through attenuating the activation of PERK-eIF2α-CHOP.


Cervical Cord , Spinal Cord Compression , Rats , Animals , Spinal Cord Compression/drug therapy , Cervical Cord/metabolism , Endoplasmic Reticulum Stress , Apoptosis , Eukaryotic Initiation Factor-2/metabolism , eIF-2 Kinase/metabolism
8.
Neural Regen Res ; 18(3): 634-642, 2023 Mar.
Article En | MEDLINE | ID: mdl-36018188

Chronic spinal cord compression (CSCC) is induced by disc herniation and other reasons, leading to movement and sensation dysfunction, with a serious impact on quality of life. Spontaneous disc herniation rarely occurs in rodents, and therefore establishing a chronic spinal cord compression (CSCC) animal model is of crucial importance to explore the pathogenesis and treatment of CSCC. The absence of secreted protein, acidic, and rich in cysteine (SPARC) leads to spontaneous intervertebral disc degeneration in mice, which resembles human disc degeneration. In this study, we evaluated whether SPARC-null mice may serve as an animal model for CSCC. We performed rod rotation test, pain threshold test, gait analysis, and Basso Mouse Scale score. Our results showed that the motor function of SPARC-null mice was weakened, and magnetic resonance images revealed compression at different spinal cord levels, particularly in the lumbar segments. Immunofluorescence staining and western blot assay showed that the absence of SPARC induced apoptosis of neurons and oligodendrocytes, activation of microglia/macrophages with M1/M2 phenotype and astrocytes with A1/A2 phenotype; it also activated the expression of the NOD-like receptor protein 3 inflammasome and inhibited brain-derived neurotrophic factor/tyrosine kinase B signaling pathway. Notably, these findings are characteristics of CSCC. Therefore, we propose that SPARC-null mice may be an animal model for studying CSCC caused by disc herniation.

9.
Front Neurosci ; 16: 946879, 2022.
Article En | MEDLINE | ID: mdl-36117612

Spinal cord injury (SCI) is a devastating condition with few treatment options. Metformin, a classical antidiabetic and antioxidant, has extended its application to experimental SCI treatment. Here, we performed a systematic review to evaluate the neurobiological roles of metformin for treating SCI in rats, and to assess the potential for clinical translation. PubMed, Embase, China National Knowledge Infrastructure, WanFang data, SinoMed, and Vip Journal Integration Platform databases were searched from their inception dates to October 2021. Two reviewers independently selected controlled studies evaluating the neurobiological roles of metformin in rats following SCI, extracted data, and assessed the quality of methodology and evidence. Pairwise meta-analyses, subgroup analyses and network analysis were performed to assess the roles of metformin in neurological function and tissue damage in SCI rats. Twelve articles were included in this systematic review. Most of them were of moderate-to-high methodological quality, while the quality of evidence from those studies was not high. Generally, Basso, Beattie, and Bresnahan scores were increased in rats treated with metformin compared with controls, and the weighted mean differences (WMDs) between metformin and control groups exhibited a gradual upward trend from the 3rd (nine studies, n = 164, WMD = 0.42, 95% CI = -0.01 to 0.85, P = 0.06) to the 28th day after treatment (nine studies, n = 136, WMD = 3.48, 95% CI = 2.04 to 4.92, P < 0.00001). Metformin intervention was associated with improved inclined plane scores, tissue preservation ratio and number of anterior horn motor neurons. Subgroup analyses indicated an association between neuroprotection and metformin dose. Network meta-analysis showed that 50 mg/kg metformin exhibited greater protection than 10 and 100 mg/kg metformin. The action mechanisms behind metformin were associated with activating adenosine monophosphate-activated protein kinase signaling, regulating mitochondrial function and relieving endoplasmic reticulum stress. Collectively, this review indicates that metformin has a protective effect on SCI with satisfactory safety and we demonstrate a rational mechanism of action; therefore, metformin is a promising candidate for future clinical trials. However, given the limitations of animal experimental methodological and evidence quality, the findings of this pre-clinical review should be interpreted with caution.

10.
Neurochem Int ; 157: 105340, 2022 07.
Article En | MEDLINE | ID: mdl-35398187

INTRODUCTION: Cervical spondylotic myelopathy (CSM) is the most prevalent type of non-traumatic spinal cord injury. The pathological process of CSM is relatively complicated. Most of the chronic cervical cord compression animal models established using hydrophilic expanding polymer are single-segment compression, which was deviated from clinical practice with double-segment or multi-segment compression. This study aims to better mimic the actual clinical compression by using a new type of hydrophilic expanding polymer to establish an animal model of double-level cervical cord compression. MATERIALS AND METHODS: Progressive cord compression was done with implantation of polyvinyl alcohol-polyacrylamide hydrogel in the spinal canal at the C3-4 and C5-6 levels. Sprague-Dawley rats (n = 32) were divided into three groups: sham (no compression, n = 12) and screw compression group (n = 8), and hydrogel compression group (n = 12). Functional deficits were characterized using motor function scores, forelimb grip strength, hindlimb pain threshold, and gait analysis, while compression was imaged with magnetic resonance imaging. The apoptosis, inflammation, and demyelination were assessed by hematoxylin and eosin staining, Luxol fast blue staining, TUNEL assay, immunofluorescence staining, and Western blot analysis. RESULTS: Motor function scores for rats with cervical cord hydrogel compression were significantly decline in motor function scores, an increase in allodynia, neurons and oligodendrocytes apoptosis related to B cell lymphoma-2 (Bcl-2)/Bcl-2 associated X (Bax)/cleaved caspase-3, and impaired axonal conduction, as well as neuroinflammation zone related to microglia or macrophages aggregation related to the nucleotide-binding domain, leucine-rich-repeat-containing family, pyrin domain-containing 3 (NLRP3) inflammasome activation, and activation of astrocytes, as well as oxidative stress were observed. CONCLUSION: We believe that this model utilizing compression on double-level cervical cord will allow researchers to investigate of translationally relevant therapeutic methods for CSM.


Cervical Cord , Spinal Cord Compression , Spinal Cord Diseases , Animals , Apoptosis/physiology , Cervical Cord/pathology , Hydrogels/pharmacology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Polymers , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Rats, Sprague-Dawley , Spinal Cord Compression/etiology , Spinal Cord Compression/pathology , Spinal Cord Compression/surgery , Spinal Cord Diseases/complications , Spinal Cord Diseases/metabolism , Spinal Cord Diseases/pathology , Spinal Cord Diseases/surgery
11.
J Ginseng Res ; 46(1): 11-22, 2022 Jan.
Article En | MEDLINE | ID: mdl-35058723

Spinal cord injury (SCI) is defined as damage to the spinal cord that temporarily or permanently changes its function. There is no definite treatment established for neurological complete injury patients. This study investigated the effect of ginseng extract and ginsenosides on neurological recovery and antioxidant efficacies in rat models following SCI and explore the appropriate dosage. Searches were done on PubMed, Embase, and Chinese databases, and animal studies matches the inclusion criteria were selected. Pair-wise meta-analysis and subgroup analysis were performed. Ten studies were included, and the overall methodological qualities were low quality. The result showed ginseng extract and ginsenosides significantly improve neurological function, through the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale (pooled MD = 4.40; 95% CI = 3.92 to 4.88; p < 0.00001), significantly decrease malondialdehyde (MDA) (n = 290; pooled MD = -2.19; 95% CI = -3.16 to -1.22; p < 0.0001) and increase superoxide dismutase (SOD) levels (n = 290; pooled MD = 2.14; 95% CI = 1.45 to 2.83; p < 0.00001). Both low (<25 mg/kg) and high dosage (≥25 mg/kg) showed significant improvement in the motor function recovery in SCI rats. Collectively, this review suggests ginseng extract and ginsenosides has a protective effect on SCI, with good safety and a clear mechanism of action and may be suitable for future clinical trials and applications.

12.
J Vis Exp ; (172)2021 06 29.
Article En | MEDLINE | ID: mdl-34279506

As a severe progressive degenerative disease, cervical spondylotic myelopathy (CSM) has a poor prognosis and is associated with physical pain, stiffness, motor or sensory dysfunction, and a high risk of spinal cord injury and acroparalysis. Thus, therapeutic strategies that promote efficient spinal cord regeneration in this chronic and progressive disease are urgently needed. Effective and reproducible animal spinal cord compression models are required to understand the complex biological mechanism underlying CSM. Most spinal cord injury models reflect acute and structural destructive conditions, whereas animal models of CSM present a chronic compression in the spinal cord. This paper presents a protocol to generate a rat spinal cord compression model, which was further evaluated by assessing the behavioral score and observing the compressed spinal cord region. The behavioral assessments showed decreased monitor motor disability, including joint movements, stepping ability, coordination, trunk stability, and limb muscle strength. Hematoxylin and eosin (H&E) staining and immunostaining revealed considerable neuronal apoptosis in the compressed region of the spinal cord.


Disabled Persons , Motor Disorders , Spinal Cord Compression , Spondylosis , Animals , Apoptosis , Cervical Vertebrae , Humans , Rats , Spinal Cord , Spinal Cord Compression/etiology
13.
Article En | MEDLINE | ID: mdl-32454869

BACKGROUND: Qi She Pill (QSP) is a traditional prescription for the treatment of neuropathic pain (NP) that is widely used in China. However, no network pharmacology studies of QSP in the treatment of NP have been conducted to date. OBJECTIVE: To verify the potential pharmacological effects of QSP on NP, its components were analyzed via target docking and network analysis, and network pharmacology methods were used to study the interactions of its components. MATERIALS AND METHODS: Information on pharmaceutically active compounds in QSP and gene information related to NP were obtained from public databases, and a compound-target network and protein-protein interaction network were constructed to study the mechanism of action of QSP in the treatment of NP. The mechanism of action of QSP in the treatment of NP was analyzed via Gene Ontology (GO) biological process annotation and Kyoto Gene and Genomics Encyclopedia (KEGG) pathway enrichment, and the drug-like component-target-pathway network was constructed. RESULTS: The compound-target network contained 60 compounds and 444 corresponding targets. The key active compounds included quercetin and beta-sitosterol. Key targets included PTGS2 and PTGS1. The protein-protein interaction network of the active ingredients of QSP in the treatment of NP featured 48 proteins, including DRD2, CHRM, ß2-adrenergic receptor, HTR2A, and calcitonin gene-related peptide. In total, 53 GO entries, including 35 biological process items, 7 molecular function items, and 11 cell related items, were identified. In addition, eight relevant (KEGG) pathways were identified, including calcium, neuroactive ligand-receptor interaction, and cAMP signaling pathways. CONCLUSION: Network pharmacology can help clarify the role and mechanism of QSP in the treatment of NP and provide a foundation for further research.

14.
J Neurochem ; 155(2): 154-176, 2020 09.
Article En | MEDLINE | ID: mdl-32215908

Cervical spondylotic myelopathy (CSM) is a common cause of disability with few treatments. Aberrant mitochondrial dynamics play a crucial role in the pathogenesis of various neurodegenerative diseases. Thus, regulation of mitochondrial dynamics may offer therapeutic benefit for the treatment of CSM. Muscone, the active ingredient of an odoriferous animal product, exhibits anti-inflammatory and neuroprotective effects for which the underlying mechanisms remain obscure. We hypothesized that muscone might ameliorate inflammatory responses and neuronal damage by regulating mitochondrial dynamics. To this end, the effects of muscone on a rat model of chronic cervical cord compression, as well as activated BV2 cells and injured neurons, were assessed. The results showed that muscone intervention improved motor function compared with vehicle-treated rats. Indeed, muscone attenuated pro-inflammatory cytokine expression, neuronal-apoptosis indicators in the lesion area, and activation of the nod-like receptor family pyrin domain-containing 3 inflammasome, nuclear transcription factor-κB, and dynamin-related protein 1 in Iba1- and ßIII-tubulin-labeled cells. Compared with vehicle-treated rats, compression sites of muscone-treated animals exhibited elongated mitochondrial morphologies in individual cell types and reduced reactive oxygen species. In vitro results indicated that muscone suppressed microglial activation and neuronal damage by regulating related-inflammatory or apoptotic molecules. Moreover, muscone inhibited dynamin-related protein 1 activation in activated BV2 cells and injured neurons, whereby it rescued mitochondrial fragmentation and reactive oxygen species production, which regulate a wide range of inflammatory and apoptotic molecules. Our findings reveal that muscone attenuates neuroinflammation and neuronal damage in rats with chronic cervical cord compression by regulating mitochondrial fission events, suggesting its promise for CSM therapy.


Anti-Inflammatory Agents/pharmacology , Cycloparaffins/pharmacology , Dynamins/genetics , Mitochondria/drug effects , Neurons/pathology , Spondylosis/drug therapy , Spondylosis/pathology , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Cytokines/antagonists & inhibitors , Cytokines/biosynthesis , Dynamins/drug effects , Locomotion , Macrophage Activation/drug effects , Male , Microglia/drug effects , Rats , Rats, Sprague-Dawley , Spinal Cord Compression/pathology , Spondylosis/physiopathology
15.
Neural Regen Res ; 15(3): 537-547, 2020 Mar.
Article En | MEDLINE | ID: mdl-31571666

OBJECTIVE: Studies have shown that docosahexaenoic acid (DHA) has a beneficial effect in the treatment of spinal cord injury. A meta-analysis was used to study the effect of DHA on the neurological recovery in the rat spinal cord injury model, and the relationship between the recovery of motor function after spinal cord injury and the time and method of administration and the dose of DHA. DATA SOURCE: Published studies on the effect of DHA on spinal cord injury animal models from seven databases were searched from their inception to January 2019, including PubMed, MEDLINE, EMBASE, the China National Knowledge Infrastructure, Wanfang, VIP, and SinoMed databases. The search terms included "spinal cord injury" "docosahexaenoic acid", and "rats". DATA SELECTION: Studies that evaluated the influence of DHA in rat models of spinal cord injury for locomotor functional recovery were included. The intervention group included any form of DHA treatment and the control group included treatment with normal saline, vehicle solution or no treatment. The Systematic Review Centre for Laboratory animal Experimentation's risk of bias assessment tool was used for the quality assessment of the included studies. Literature inclusion, quality evaluation and data extraction were performed by two researchers. Meta-analysis was then conducted on all studies that met the inclusion criteria. Statistical analysis was performed on the data using RevMan 5.1.2. software. OUTCOME MEASURES: The primary outcome measure was the score on the Basso, Beattie, and Bresnahan scale. Secondary outcome measures were the sloping plate test, balance beam test, stair test and grid exploration test. RESULTS: A total of 12 related studies were included, 3 of which were of higher quality and the remaining 9 were of lower quality. The highest mean Basso, Beattie, and Bresnahan scale score occurred at 42 days after DHA treatment in spinal cord injury rats. At 21 days after treatment, the mean difference in Basso, Beattie, Bresnahan scores between the DHA group and the control group was the most significant (pooled MD = 4.14; 95% CI = 3.58-4.70; P < 0.00001). In the subgroup analysis, improvement in the Basso, Beattie, and Bresnahan scale score was more significant in rats administered DHA intravenously (pooled MD = 2.74; 95% CI = 1.41-4.07; P < 0.0001) and subcutaneously (pooled MD = 2.99; 95% CI = 2.29-3.69; P < 0.00001) than in the groups administered DHA orally (pooled MD = 3.04; 95% CI = -1.01 to 7.09; P = 0.14). Intravenous injection of DHA at 250 nmol/kg (pooled MD = 2.94; 95% CI = 2.47-3.41; P < 0.00001] and 1000 nmol/kg [pooled MD = 3.60; 95% CI = 2.66-4.54; P < 0.00001) significantly improved the Basso, Beattie, and Bresnahan scale score in rats and promoted the recovery of motor function. CONCLUSION: DHA can promote motor functional recovery after spinal cord injury in rats. The administration of DHA by intravenous or subcutaneous injection is more effective than oral administration of DHA. Intravenous injection of DHA at doses of 250 nmol/kg or 1000 nmol/kg is beneficial. Because of the small number and the low quality of the included studies, more high-quality research is needed in future to substantiate the results.

16.
Neural Regen Res ; 14(11): 1919-1931, 2019 Nov.
Article En | MEDLINE | ID: mdl-31290450

OBJECTIVE: To evaluate the efficacy and safety of MK-801 and its effect on lesion volume in rat models of acute brain injury. DATA SOURCES: Key terms were "stroke", "brain diseases", "brain injuries", "brain hemorrhage, traumatic", "acute brain injury", "dizocilpine maleate", "dizocilpine", "MK-801", "MK801", "rat", "rats", "rattus" and "murine". PubMed, Cochrane library, EMBASE, the China National Knowledge Infrastructure, WanFang database, the VIP Journal Integration Platform (VJIP) and SinoMed databases were searched from their inception dates to March 2018. DATA SELECTION: Studies were selected if they reported the effects of MK-801 in experimental acute brain injury. Two investigators independently conducted literature screening, data extraction, and methodological quality assessments. OUTCOME MEASURES: The primary outcomes included lesion volume and brain edema. The secondary outcomes included behavioral assessments with the Bederson neurological grading system and the water maze test 24 hours after brain injury. RESULTS: A total of 52 studies with 2530 samples were included in the systematic review. Seventeen of these studies had a high methodological quality. Overall, the lesion volume (34 studies, n = 966, MD = -58.31, 95% CI: -66.55 to -50.07; P < 0.00001) and degree of cerebral edema (5 studies, n = 75, MD = -1.21, 95% CI: -1.50 to -0.91; P < 0.00001) were significantly decreased in the MK-801 group compared with the control group. MK-801 improved spatial cognition assessed with the water maze test (2 studies, n = 60, MD = -10.88, 95% CI: -20.75 to -1.00; P = 0.03) and neurological function 24 hours after brain injury (11 studies, n = 335, MD = -1.04, 95% CI: -1.47 to -0.60; P < 0.00001). Subgroup analysis suggested an association of reduction in lesion volume with various injury models (34 studies, n = 966, MD = -58.31, 95% CI: -66.55 to -50.07; P = 0.004). Further network analysis showed that 0-1 mg/kg MK-801 may be the optimal dose for treatment in the middle cerebral artery occlusion animal model. CONCLUSION: MK-801 effectively reduces brain lesion volume and the degree of cerebral edema in rat models of experimental acute brain injury, providing a good neuroprotective effect. Additionally, MK-801 has a good safety profile, and its mechanism of action is well known. Thus, MK-801 may be suitable for future clinical trials and applications.

17.
Trials ; 20(1): 377, 2019 Jun 24.
Article En | MEDLINE | ID: mdl-31234919

BACKGROUND: Knee osteoarthritis (KOA) is a common chronic musculoskeletal disorder that seriously affects quality of life. Patients with KOA frequently develop one or more of the following typical symptoms: joint pain, stiffness, joint friction noise and impaired functionality. Traditional Chinese medicine (TCM) has been shown to have a superior effect and a particular advantage in the treatment of KOA; among TCM, the Tong-luo Qu-tong plaster is the convenient and most commonly used method in China to improve symptoms including pain, stiffness and limited mobility in patients with KOA, as it causes few adverse effects. But there is a lack of high-quality clinical evidences to support the therapeutic effect that Chinese adhesive plaster can have in relieving pain and stiffness. The purpose of this study will be to evaluate the efficacy and safety of Tong-luo Qu-tong plaster in patients with KOA. METHODS/DESIGN: This study will be a randomized, double-blind, parallel positive controlled, multi-center clinical trial, a non-inferiority trial design was adopted. A total of 2000 participants older than 40 years, with KOA, will be randomly allocated into an experimental group (n = 1500) and a control group (n = 500). All participants will receive a conventional conservative treatment lasting for 14 days as two courses, once daily. Tong-luo Qu-tong plaster will be administered externally to participants in the experimental group, while the control group will receive a Qi-zheng Xiao-tong plaster. The outcome of the total Western Ontario and McMaster Universities Arthritis Index scores, TCM syndrome quantitative score and visual analog scale scores will be measured during the assessment visits (baseline and 1-week and 2-week follow up). In addition, adverse events related to clinical symptoms and signs and results of laboratory tests will be documented during the clinical trials. DISCUSSION: This study will provide reliable evidence of the effectiveness and safety of Tong-luo Qutong plaster in patients with KOA. If the results are favorable, it is expected that the patients with KOA will benefit from this study, many patients may have a good alternative treatment for KOA. TRIAL REGISTRATION: ClinicalTrials.gov, ID: NCT03309501 . Registered on 8 November 2017.


Arthralgia/drug therapy , Drugs, Chinese Herbal/administration & dosage , Medicine, Chinese Traditional , Osteoarthritis, Knee/drug therapy , Randomized Controlled Trials as Topic , Adult , Double-Blind Method , Drugs, Chinese Herbal/adverse effects , Humans , Outcome Assessment, Health Care , Research Design
18.
J Neurochem ; 150(1): 6-27, 2019 07.
Article En | MEDLINE | ID: mdl-30786027

Spinal cord injury (SCI) is a devastating condition that has few treatment options. Riluzole, a sodium channel blocker used to treat amyotrophic lateral sclerosis, has been initially trialed in human SCI. We performed a systematic review to critically assess the efficacy of riluzole in locomotor recovery and damage extension in SCI rat models, and the potential for clinical translation. PubMed, Embase, Cochrane Library, and Chinese databases were searched from their inception date to March 2018. Two reviewers independently selected animal studies that evaluated neurological recovery and lesion area following riluzole treatment in SCI rat models, extracted data and assessed methodological quality. Pairwise meta-analysis, subgroup analysis, and network meta-analysis were performed to assess the effects of riluzole on SCI. Ten eligible studies were included. Two studies had high methodological quality. Overall, the Basso, Beattie, and Bresnahan scores were increased in riluzole-treated animals versus controls, and effect sizes showed a gradual increase from the 1st (five studies, n = 104, mean difference = 1.24, 95% CI = 0.11 to 2.37, p = 0.03) to 6th week after treatment (five studies, n = 120, mean difference = 2.34, 95% CI = 1.26 to 3.42, p < 0.0001). Riluzole was associated with improved outcomes in the inclined plane test and the tissue preservation area. Subgroup analyses suggested an association of locomotor recovery with riluzole dose. Network meta-analysis showed that 5 mg/kg riluzole exhibited greater protection than 2.5 and 8 mg/kg riluzole. Collectively, this review suggests that riluzole has a protective effect on SCI, with good safety and a clear mechanism of action and may be suitable for future clinical trials or applications. However, animal results should be interpreted with caution given the known limitations in animal experimental design and methodological quality.


Neuroprotective Agents/pharmacology , Recovery of Function/drug effects , Riluzole/pharmacology , Spinal Cord Injuries , Spinal Cord/drug effects , Animals , Rats , Spinal Cord/pathology , Spinal Cord Injuries/pathology
...