Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Metab ; 6(2): 238-253, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38278946

RESUMEN

Biphasic glucose-stimulated insulin secretion (GSIS) is essential for blood glucose regulation, but a mechanistic model incorporating the recently identified islet ß cell heterogeneity remains elusive. Here, we show that insulin secretion is spatially and dynamically heterogeneous across the islet. Using a zinc-based fluorophore with spinning-disc confocal microscopy, we reveal that approximately 40% of islet cells, which we call readily releasable ß cells (RRßs), are responsible for 80% of insulin exocytosis events. Although glucose up to 18.2 mM fully mobilized RRßs to release insulin synchronously (first phase), even higher glucose concentrations enhanced the sustained secretion from these cells (second phase). Release-incompetent ß cells show similarities to RRßs in glucose-evoked Ca2+ transients but exhibit Ca2+-exocytosis coupling deficiency. A decreased number of RRßs and their altered secretory ability are associated with impaired GSIS progression in ob/ob mice. Our data reveal functional heterogeneity at the level of exocytosis among ß cells and identify RRßs as a subpopulation of ß cells that make a disproportionally large contribution to biphasic GSIS from mouse islets.


Asunto(s)
Insulinas Bifásicas , Células Secretoras de Insulina , Ratones , Animales , Secreción de Insulina , Insulinas Bifásicas/metabolismo , Glucosa/farmacología , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Exocitosis/fisiología
2.
Environ Monit Assess ; 195(6): 675, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37188927

RESUMEN

Biological effect-based monitoring is essential for predicting or alerting to a possible deterioration in drinking water quality. In the present study, a reporter gene assay based on oxidative stress-mediated Pgst-4::GFP induction in the Caenorhabditis elegans strain VP596 (VP596 assay) was assessed for its applicability in evaluating drinking water safety and quality. This assay was used to measure the oxidative stress response in VP596 worms exposed to six ubiquitous components (As3+, Al3+, F-, NO3--N, CHCl3, and residual chlorine) in drinking water, eight mixtures of these six components designed through orthogonal design, ninety-six unconcentrated water samples from source to tap water in two supply systems, and organic extracts (OEs) of twenty-five selected water samples. Pgst-4::GFP fluorescence was not induced by Al3+, F-, NO3--N, and CHCl3, and was significantly enhanced by As3+ and residual chlorine only at concentrations higher than their respective drinking water guideline levels. Pgst-4::GFP induction was not detected in any of the six-component mixtures. Induction of Pgst-4::GFP was observed in 9.4% (3/32) of the source water samples but not in the drinking water samples. However, a notable induction effect was revealed in the three OEs of drinking water, with a relative enrichment factor of 200. These results suggest that the VP596 assay has limited utility for screening drinking water safety by testing unconcentrated water samples; however, it offers a supplemental in vivo tool for prioritizing water samples for an enhanced quality assessment, monitoring pollutant removal performance by drinking water treatment plants, and evaluating water quality in water supplies.


Asunto(s)
Agua Potable , Purificación del Agua , Animales , Calidad del Agua , Caenorhabditis elegans , Cloro , Monitoreo del Ambiente/métodos , Abastecimiento de Agua
3.
Environ Sci Pollut Res Int ; 30(23): 64058-64066, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37060410

RESUMEN

Drinking water safety is threatened by numerous toxic organic pollutants difficult to chemically monitor. This study aimed to determine the toxicological profiles of organic extracts (OEs) of water samples from source to tap in two drinking water supply systems in a metropolitan city, Central China, during different hydrological periods. Mortality, DNA damage, growth, and development of Caenorhabditis elegans were evaluated following exposure to OEs. The median lethal doses of OEs of drinking water samples (n = 48) ranged from 266 REF (relative enrichment factor) to > 1563 REF. When tested at a dose of 100 REF, 56.25% (27/48) of OEs induced genotoxicity, 4.17% (2/48) inhibited the growth, and 45.83% (22/48) decreased the offspring number in C. elegans. No clear temporal-spatial variation patterns of the OEs toxicity indicators were observed. The correlations among the toxicity indicators were generally poor. The observed toxicities were not closely related to the level of dissolved organic carbon in drinking water. These findings support using multiple endpoint bioassays, such as C. elegans-based approaches, as complementary tools to conventional chemical analysis for drinking water quality monitoring.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Animales , Agua Potable/análisis , Monitoreo del Ambiente , Caenorhabditis elegans , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua , China
4.
Cell Insight ; 1(2): 100020, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37193129

RESUMEN

During the progression of type 2 diabetes, total body zinc deficiency disrupts the formability of the electron-dense core in beta-cell vesicles, but the mechanism is unclear. Using fluorescence imaging, transmission electron microscopy and pharmacokinetics assays, we established a strong link between an increasing concentration of free zinc and the formability enhancement of the dense core electron density. Thus, our results highlight a mechanism by which zinc supplementation enhances the maturation of dense cores and restores the secretion of insulin in two diabetic mouse models both in vitro and in vivo. This study provides a potential research direction for investigating the etiology and nutrition of zinc in the management of type 2 diabetes.

5.
Chemosphere ; 288(Pt 2): 132541, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34648782

RESUMEN

The spatiotemporal presence of overall disinfection by-products (DBPs) in two full-scale drinking water supply systems (DWSSs) were investigated using quantification of total organic halogen (TOX). The relationships of TOX with water quality parameters (especially the most regulated DBPs, trihalomethanes (THMs)) were also evaluated. The TOX levels ranged between 2.6 and 70.3 µg Cl/L and between 46.6 and 205.9 µg Cl/L in raw water and distribution water, respectively. The TOX concentration in water increased by an average of nine times after water treatment and varied slightly during distribution, suggesting that TOX in drinking water was mainly formed during chlorination disinfection rather than distribution. No clear seasonality in TOX level was observed. Positive correlations were found between raw water dissolved organic carbon (DOC) with an increase in TOX in treated water and between DOC level with TOX content in distributed water, emphasizing a key role of organics in TOX formation. Chloroform (TCM) was the dominant THM, followed by bromodichloromethane (BDCM) in the drinking water, and the levels of the other two measured THMs (dibromochloromethane and bromoform) were negligible. THM2 (sum of TCM and BDCM) made up average of 18% of the TOX, and was weakly correlated with TOX content (rs = 0.321; P < 0.05), implying that THM is not a suitable surrogate measure for TOX in drinking water. This study provides basic data on the occurrence and variation of TOX within conventional DWSSs and highlights the importance of using TOX measurements to obtain more accurate information about DBP occurrence, for exposure assessment and regulatory determination.


Asunto(s)
Agua Potable , Materia Orgánica Disuelta , Halógenos , Trihalometanos
6.
Sci Rep ; 9(1): 3975, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30850711

RESUMEN

In many non-excitable cells, the depletion of endoplasmic reticulum (ER) Ca2+ stores leads to the dynamic formation of membrane contact sites (MCSs) between the ER and the plasma membrane (PM), which activates the store-operated Ca2+ entry (SOCE) to refill the ER store. Two different Ca2+-sensitive proteins, STIM1 and extended synaptotagmin-1 (E-syt1), are activated during this process. Due to the lack of live cell super-resolution imaging, how MCSs are dynamically regulated by STIM1 and E-syt1 coordinately during ER Ca2+ store depletion and replenishment remain unknown. With home-built super-resolution microscopes that provide superior axial and lateral resolution in live cells, we revealed that extracellular Ca2+ influx via SOCE activated E-syt1s to move towards the PM by ~12 nm. Unexpectedly, activated E-syt1s did not constitute the MCSs per se, but re-arranged neighboring ER structures into ring-shaped MCSs (230~280 nm in diameter) enclosing E-syt1 puncta, which helped to stabilize MCSs and accelerate local ER Ca2+ replenishment. Overall, we have demonstrated different roles of STIM1 and E-syt1 in MCS formation regulation, SOCE activation and ER Ca2+ store replenishment.


Asunto(s)
Calcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Neoplasias/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Sinaptotagminas/metabolismo , Señalización del Calcio/fisiología , Línea Celular , Línea Celular Tumoral , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo
7.
Ecotoxicol Environ Saf ; 148: 729-737, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29179145

RESUMEN

This study investigated the treatment performance of three types of modified activated sludge processes, i.e., anoxic/oxic (A/O), anaerobic/anoxic/oxic (A2/O) and oxidation ditch process, in treating municipal wastewater by measuring physicochemical and spectroscopic parameters, and the toxicity of the influents and effluents collected from 8 full-scale municipal wastewater treatment plants (MWTPs). The relationships between spectroscopic and physicochemical parameters of the wastewater samples and the applicability of the nematode Caenorhabditis elegans (C. elegans) bioassays for the assessment of the toxic properties of municipal wastewater were also evaluated. The results indicated that the investigated MWTPs employing any of A/O, A2/O and oxidation ditch processes could effectively control the discharge of major wastewater pollutants including biochemical oxygen demand (BOD), chemical oxygen demand, nitrogen and phosphorus. The oxidation ditch process appeared to have the advantage of removing tyrosine-like substances and presented slightly better removal efficiency of tryptophan-like fluorescent (peak T) substances than the A/O and A2/O processes. Both ultraviolet absorbance at 254nm and peak T may be used to characterize the organic load of municipal wastewater, and peak T can be adopted as a gauge of the BOD removal efficacy of municipal wastewater treatment. Using C. elegans-based oxygen consumption rate assay for monitoring municipal wastewater toxicity deserves further investigations.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales/análisis , Aguas Residuales/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Purificación del Agua/métodos , Aerobiosis , Anaerobiosis , Animales , Análisis de la Demanda Biológica de Oxígeno , Caenorhabditis elegans/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Oxidación-Reducción , Aguas del Alcantarillado/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA