Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 14(8)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39202753

RESUMEN

The primary objective of this study was to assess the influence of exercise interventions on cancer-related fatigue (CRF), specifically in breast cancer patients, with the ultimate goal of establishing an optimal exercise prescription for breast cancer patients. A comprehensive search was undertaken across multiple databases, including Embase, PubMed, Cochrane Library, Web of Science, and Scopus, covering data published up to 1 September 2023. A meta-analysis was conducted to calculate the standardized mean difference (SMD) along with its corresponding 95% confidence interval (CI), thereby quantifying the effectiveness of exercise in alleviating CRF in the breast cancer patient population. Twenty-six studies met the inclusion criteria. Aerobic exercise (SMD, -0.17, p = 0.02), resistance exercise (SMD, -0.37, p = 0.0009), and combined exercise (SMD, -0.53, p < 0.0001) significantly improved CRF in breast cancer patients. In addition, exercise intervention conducted ≥3 times per week (SMD, -0.47, p = 0.0001) for >60 min per session (SMD, -0.63, p < 0.0001) and ≥180 min per week (SMD, -0.79, p < 0.0001) had greater effects on improving CRF in breast cancer patients, especially middle-aged patients (SMD, -0.42, p < 0.0001). Exercise is an effective approach to improving CRF in breast cancer patients. When devising an exercise program, the primary consideration should be the incorporation of combined exercise as the principal intervention. This entails ensuring that participants engage in the program at least three times weekly, with each session lasting for more than 60 min. The ultimate aim is to achieve a total weekly exercise duration of 180 min by progressively increasing the frequency of exercise sessions.

2.
Chemosphere ; 349: 140958, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38104735

RESUMEN

A novel 3D bimetallic metal-organic framework (MOF(Fe-Co)) was successfully prepared and its performance on sulfamethoxazole (SMX) removal in advanced oxidation process (AOP) based on peracetic acid (PAA) was evaluated. MOF(Fe-Co) exhibited an efficient catalytic performance on PAA activation for SMX degradation under neutral condition. Increasing PAA concentration could enhance SMX removal, while the variation of MOF(Fe-Co) dosage from 0.05 to 0.2 g/L had an inappreciable effect on SMX removal. According to the results of inductively coupled plasma mass spectrometry analyses and X-ray photoelectron spectroscopy, catalytic reactions mainly occurred on the surface of MOF(Fe-Co). Organic radicals (i.e., CH3C(O)OO• and CH3C(O)O•) were demonstrated to be the predominant reactive radicals for SMX degradation by MOF(Fe-Co)/PAA through radical quenching experiments. The presence of Cl- could enhance the degradation of SMX by MOF(Fe-Co)/PAA, while HCO3- and natural organic matter inhibited SMX degradation severely. Five identified degradation products were detected in this system and four possible SMX transformation pathways were proposed, including amino oxidation, S-N bond cleavage, coupling reaction and hydroxylation.


Asunto(s)
Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Ácido Peracético , Sulfametoxazol/química , Contaminantes Químicos del Agua/análisis , Oxidación-Reducción , Peróxido de Hidrógeno/química
3.
Int J Mol Sci ; 24(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37894780

RESUMEN

The NAC gene family has transcription factors specific to plants, which are involved in development and stress response and adaptation. In this study, ZmNAC89, an NAC gene in maize that plays a role in saline-alkaline tolerance, was isolated and characterized. ZmNAC89 was localized in the nucleus and had transcriptional activation activity during in vitro experiments. The expression of ZmNAC89 was strongly upregulated under saline-alkaline, drought and ABA treatments. Overexpression of the ZmNAC89 gene in transgenic Arabidopsis and maize enhanced salt tolerance at the seedling stage. Differentially expressed genes (DEGs) were then confirmed via RNA-sequencing analysis with the transgenic maize line. GO analyses showed that oxidation-reduction process-regulated genes were involved in ZmNAC89-mediated salt-alkaline stress. ZmNAC89 may regulate maize saline-alkali tolerance through the REDOX pathway and ABA signal transduction pathway. From 140 inbred maize lines, 20 haplotypes and 16 SNPs were found in the coding region of the ZmNAC89 gene, including the excellent haplotype HAP20. These results contribute to a better understanding of the response mechanism of maize to salt-alkali stress and marker-assisted selection during maize breeding.


Asunto(s)
Tolerancia a la Sal , Zea mays , Tolerancia a la Sal/genética , Zea mays/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Fitomejoramiento , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Álcalis/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Sequías , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
RSC Adv ; 13(35): 24819-24829, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37608974

RESUMEN

The removal of methylene blue (MB) in water is a challenging task due to its toxicity, carcinogenicity and resistance to biodegradation. Accordingly, a novel composite catalyst (BC@LF) was prepared by loading lanthanum ferrite (LaFeO3) on biomass carbon (BC) to activate bisulfite (BS) for methylene MB removal in this study. Characterization via scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) indicated that LaFeO3 was successfully loaded on BC. X-ray photoelectron spectroscopy (XPS) analysis suggested that [triple bond, length as m-dash]Fe(iii) was the main active site for BS activation. It was found that 99.4% MB was removed within 60 min in BC@LF/BS system. Sulfate radical (SO4˙-) and hydroxyl radicals (HO˙) were proved to be responsible for MB removal in the BC@LF/BS system and SO5˙- might also be involved in MB removal. The degradation efficiency of MB in the BC@LF/BS system decreased with increasing pH, while the adsorption efficiency of BC@LF for MB improved with increasing pH. Additionally, BC@LF exhibited good reusability for BS activation in successive uses. The BC@LF/BS system exhibited favorable removal effect for various organic compounds, indicating that it has good applicability in the treatment of organic wastewater.

5.
Phys Chem Chem Phys ; 24(36): 21666-21673, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36069358

RESUMEN

Metal chalcogenides have become popular materials for next-generation electronic devices due to their wide band gap and excellent transport properties. Specifically, two-dimensional metal chalcogenides also have outstanding physical properties. For electronic devices, the carrier mobility is a key parameter because it affects the material conductivity and the response time. As a member of metal chalcogenides, GaS has attracted the attention of scholars. In this work, by using first principles calculations and the Wannier function interpolation, the electronic and phonon properties, the electron-phonon interaction, the scattering rate, and the carrier mobility of monolayer and bulk GaS are systematically studied. The results show that GaS is a semiconductor and both monolayer and bulk GaS are dynamically stable. The LO phonon modes at long wavelengths strongly affect the carrier migration in GaS. We give the carrier mobility of monolayer and bulk GaS as a function of temperature (100 < K < 500). In addition, we compare the carrier mobility of GaS with several other metal chalcogenides (monolayer and bulk InSe, monolayer GeS, and monolayer GeSe) at 300 K. The results show that an increase in temperature leads to a decrease in the carrier mobility and the electron (hole) mobility of monolayer and bulk GaS is 10.85 cm2 V-1 s-1 (0.22 cm2 V-1 s-1) and 1229.79 cm2 V-1 s-1 (9.28 cm2 V-1 s-1), respectively. By comparing with the carrier mobility of other chalcogenides, we can find that the electron mobility of bulk GaS is the highest, which indicates that bulk GaS has high application potential.

6.
Front Plant Sci ; 13: 963874, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35923879

RESUMEN

Soil salt-alkalization is a common yet critical environmental stress factor for plant growth and development. Discovering and exploiting genes associated with alkaline tolerance in maize (Zea mays L.) is helpful for improving alkaline resistance. Here, an association panel consisting of 200 maize lines was used to identify the genetic loci responsible for alkaline tolerance-related traits in maize seedlings. A total of nine single-nucleotide polymorphisms (SNPs) and their associated candidate genes were found to be significantly associated with alkaline tolerance using a genome-wide association study (GWAS). An additional 200 genes were identified when the screen was extended to include a linkage disequilibrium (LD) decay distance of r2 ≥ 0.2 from the SNPs. RNA-sequencing (RNA-seq) analysis was then conducted to confirm the linkage between the candidate genes and alkali tolerance. From these data, a total of five differentially expressed genes (DEGs; |log2FC| ≥ 0.585, p < 0.05) were verified as the hub genes involved in alkaline tolerance. Subsequently, two candidate genes, Zm00001d038250 and Zm00001d001960, were verified to affect the alkaline tolerance of maize seedlings by qRT-PCR analysis. These genes were putatively involved protein binding and "flavonoid biosynthesis process," respectively, based on Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses. Gene promoter region contains elements related to stress and metabolism. The results of this study will help further elucidate the mechanisms of alkaline tolerance in maize, which will provide the groundwork for future breeding projects.

7.
Chemosphere ; 306: 135506, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35777545

RESUMEN

In this study, a novel peracetic acid (PAA)-based advanced oxidation process using Mn3O4 as a catalyst was proposed. A thorough sulfamethoxazole (SMX) removal could be achieved within 12 min in Mn3O4/PAA system at neutral pH. The characterization results of fresh and used Mn3O4 suggested that ≡Mn(II), ≡Mn(III) and ≡Mn(IV) on Mn3O4 were the Mn species for PAA activation, constituting the redox cycles of ≡Mn(II)/≡Mn(III) and ≡Mn(III)/≡Mn(IV) simultaneously. Organic radicals (i.e., CH3C(O)O• and CH3C(O)OO•) were verified to be the dominant reactive species responsible for SMX degradation in Mn3O4/PAA system by radical scavenging experiments. The neutral condition was the most favorable pH for SMX removal in Mn3O4/PAA system and the increase of PAA or Mn3O4 dosage could enhance SMX degradation. Presence of HCO3- and natural organic matter (NOM) could inhibit SMX degradation, while Cl-, NO3- and SO42- had a negligible effect on SMX removal. The thorough SMX removal in successive experiments and characterization results of used Mn3O4 suggested the good reusability and stability of Mn3O4 for PAA activation. Based on six detected transformation products of SMX, hydroxylation, nitration, bond cleavage and coupling reaction were proposed to be its degradation pathways in Mn3O4/PAA system.


Asunto(s)
Sulfametoxazol , Contaminantes Químicos del Agua , Catálisis , Peróxido de Hidrógeno , Oxidación-Reducción , Ácido Peracético , Sulfametoxazol/química , Contaminantes Químicos del Agua/química
8.
RSC Adv ; 12(22): 13810-13819, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35541433

RESUMEN

In this study, cobalt doped graphitic carbon nitride (Co-CN) was prepared and applied as a catalyst to activate peracetic acid (PAA) for sulfamethoxazole (SMX) degradation at neutral pH. PAA could be efficiently activated by Co-CN resulting in the efficient degradation of SMX. Characterization results of fresh and used Co-CN suggested that cobalt was successfully doped in graphitic carbon nitride (g-C3N4) through chemical bonding (Co-N bond) and the surface cobalt species in Co-CN (i.e., [triple bond, length as m-dash]Co(ii) and [triple bond, length as m-dash]Co(iii)) were the main activators for PAA. Organic radicals (i.e., CH3C(O)O˙ and CH3C(O)OO˙) were proved to be the dominant reactive species for SMX removal in the Co-CN/PAA system by radical scavenging experiments. The increase of cobalt doping content, PAA dosage or Co-CN dosage could accelerate SMX degradation and the neutral condition was highly favorable to SMX removal in Co-CN/PAA system. Co-CN exhibited a good stability and reusability for PAA activation in degrading SMX. Four possible degradation pathways of SMX (i.e., hydroxylation, nitration, bond cleavage and coupling reaction) were proposed in the Co-CN/PAA system according to eight identified transformation products.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA