Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 355
1.
Mar Drugs ; 22(5)2024 May 14.
Article En | MEDLINE | ID: mdl-38786609

Two new cytochalasin derivatives, peniotrinins A (1) and B (2), three new citrinin derivatives, peniotrinins C-E (4, 5, 7), and one new tetramic acid derivative, peniotrinin F (12), along with nine structurally related known compounds, were isolated from the solid culture of Peniophora sp. SCSIO41203. Their structures, including the absolute configurations of their stereogenic carbons, were fully elucidated based on spectroscopic analysis, quantum chemical calculations, and the calculated ECD. Interestingly, 1 is the first example of a rare 6/5/5/5/6/13 hexacyclic cytochalasin. We screened the above compounds for their anti-prostate cancer activity and found that compound 3 had a significant anti-prostate cancer cell proliferation effect, while compounds 1 and 2 showed weak activity at 10 µM. We then confirmed that compound 3 exerts its anti-prostate cancer effect by inducing methuosis through transmission electron microscopy and cellular immunostaining, which suggested that compound 3 might be first reported as a potential anti-prostate methuosis inducer.


Antineoplastic Agents , Prostatic Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Male , PC-3 Cells , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Cell Proliferation/drug effects , Cytochalasins/pharmacology , Cytochalasins/chemistry , Cytochalasins/isolation & purification , Aquatic Organisms , Cell Line, Tumor , Molecular Structure
2.
Article En | MEDLINE | ID: mdl-38722450

PURPOSE: Aztreonam/avibactam is effective against serious infections caused by Gram-negative bacteria including Enterobacterales harboring metallo-ß-lactamases. While the utility of this combination has been established in vitro and in clinical trials, the purpose of this study is to enhance our understanding of the underlying mechanism responsible for their activities through metabolomic profiling of a multidrug-resistant Escherichia coli clinical isolate. METHODS: Metabolomic analyses of time-dependent changes in endogenous bacterial metabolites in a clinical isolate of a multidrug-resistant E. coli treated with aztreonam and avibactam were performed. E. coli metabolomes were compared at 15 min, 1 h and 24 h following treatments with either avibactam (4 mg/L), aztreonam (4 mg/L), or aztreonam (4 mg/L) + avibactam (4 mg/L). RESULTS: Drug treatment affected 326 metabolites with magnitude changes of at least 2-fold, most of which are involved primarily in peptidoglycan biosynthesis, nucleotide metabolism, and lipid metabolism. The feedstocks for peptidoglycan synthesis were depleted by aztreonam/avibactam combination; a significant downstream increase in nucleotide metabolites and a release of lipids were observed at the three timepoints. CONCLUSION: The findings indicate that the aztreonam/avibactam combination accelerates structural damage to the bacterial membrane structure and their actions were immediate and sustained compared to aztreonam or avibactam alone. By inhibiting the production of crucial cell wall precursors, the combination may have inflicted damages on bacterial DNA.

3.
Nat Prod Bioprospect ; 14(1): 33, 2024 May 21.
Article En | MEDLINE | ID: mdl-38771401

N-Hydroxyapiosporamide (N-hydap), a marine product derived from a sponge-associated fungus, has shown promising inhibitory effects on small cell lung cancer (SCLC). However, there is limited understanding of its metabolic pathways and characteristics. This study explored the in vitro metabolic profiles of N-hydap in human recombinant cytochrome P450s (CYPs) and UDP-glucuronosyltransferases (UGTs), as well as human/rat/mice microsomes, and also the pharmacokinetic properties by HPLC-MS/MS. Additionally, the cocktail probe method was used to investigate the potential to create drug-drug interactions (DDIs). N-Hydap was metabolically unstable in various microsomes after 1 h, with about 50% and 70% of it being eliminated by CYPs and UGTs, respectively. UGT1A3 was the main enzyme involved in glucuronidation (over 80%), making glucuronide the primary metabolite. Despite low bioavailability (0.024%), N-hydap exhibited a higher distribution in the lungs (26.26%), accounting for its efficacy against SCLC. Administering N-hydap to mice at normal doses via gavage did not result in significant toxicity. Furthermore, N-hydap was found to affect the catalytic activity of drug metabolic enzymes (DMEs), particularly increasing the activity of UGT1A3, suggesting potential for DDIs. Understanding the metabolic pathways and properties of N-hydap should improve our knowledge of its drug efficacy, toxicity, and potential for DDIs.

4.
J Nat Prod ; 87(5): 1401-1406, 2024 May 24.
Article En | MEDLINE | ID: mdl-38634860

An unprecedented di-seco-indole diterpenoid, peniditerpenoid A (1), and a rare N-oxide-containing indole diterpenoid derivative, peniditerpenoid B (2), together with three known ones (3-5), were obtained from the mangrove-sediment-derived fungus Penicillium sp. SCSIO 41411. Their structures were determined by the analysis of spectroscopic data, quantum chemical calculations, and X-ray diffraction analyses. Peniditerpenoid A (1) inhibited lipopolysaccharide-induced NF-κB with an IC50 value of 11 µM and further effectively prevented RANKL-induced osteoclast differentiation in bone marrow macrophages. In vitro studies demonstrated that 1 exerted significant inhibition of NF-κB activation in the classical pathway by preventing TAK1 activation, IκBα phosphorylation, and p65 translocation. Furthermore, 1 effectively reduced the level of NFATc1 activation, resulting in the attenuation of osteoclast differentiation. Our findings suggest that 1 holds promise as an inhibitor with significant potential for the treatment of diseases related to osteoporosis.


Cell Differentiation , Diterpenes , Indoles , NF-kappa B , Osteoclasts , Penicillium , Penicillium/chemistry , Osteoclasts/drug effects , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/isolation & purification , Animals , Mice , Cell Differentiation/drug effects , Molecular Structure , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Indoles/pharmacology , Indoles/chemistry , RANK Ligand/pharmacology , Lipopolysaccharides/pharmacology , Macrophages/drug effects
5.
Mar Drugs ; 22(3)2024 Feb 23.
Article En | MEDLINE | ID: mdl-38535444

Two new sesquiterpenoid derivatives, elgonenes M (1) and N (2), and a new shikimic acid metabolite, methyl 5-O-acetyl-5-epi-shikimate (3), were isolated from the mangrove sediment-derived fungus Roussoella sp. SCSIO 41427 together with fourteen known compounds (4-17). The planar structures were elucidated through nuclear magnetic resonance (NMR) and mass spectroscopic (MS) analyses. The relative configurations of 1-3 were ascertained by NOESY experiments, while their absolute configurations were determined by electronic circular dichroism (ECD) calculation. Elgonene M (1) exhibited inhibition of interleukin-1ß (IL-1ß) mRNA, a pro-inflammatory cytokine, at a concentration of 5 µM, with an inhibitory ratio of 31.14%. On the other hand, elgonene N (2) demonstrated inhibition at a concentration of 20 µM, with inhibitory ratios of 27.57%.


Ascomycota , Sesquiterpenes , Shikimic Acid/analogs & derivatives , Circular Dichroism
6.
ACS Appl Mater Interfaces ; 16(11): 13466-13480, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38445450

Guided bone regeneration (GBR) technology has been widely used for the regeneration of periodontal bone defects. However, the limited mechanical properties and bone regeneration potential of the currently available GBR membranes often limit their repair effectiveness. In this paper, serum-derived growth factor lysophosphatidic acid (LPA) nanoparticles and dopamine-decorative nanohydroxyapatite (pDA/nHA) particles were double-loaded into polylactic-glycolic acid/polycaprolactone (PLGA/PCL) scaffolds as an organic/inorganic biphase delivery system, namely, PP-pDA/nHA-LPA scaffolds. Physicochemical properties and osteogenic ability in vitro and in vivo were performed. Scanning electron microscopy and mechanical tests showed that the PP-pDA/nHA-LPA scaffolds had a 3D bionic scaffold structure with improved mechanical properties. In vitro cell experiments demonstrated that the PP-pDA/nHA-LPA scaffolds could significantly enhance the attachment, proliferation, osteogenic differentiation, and mineralization of MC3T3-E1 cells. In vivo, the PP-pDA/nHA-LPA scaffolds exhibited great cytocompatibility and cell recruitment ability in 2- and 4-week subcutaneous implantation experiments and significantly promoted bone regeneration in the periodontal defect scaffold implantation experiment. Moreover, LPA-loaded scaffolds were confirmed to enhance osteogenic activities by upregulating the expression of ß-catenin and further activating the Wnt/ß-catenin pathway. These results demonstrate that the biphase PP-pDA/nHA-LPA delivery system is a promising material for the GBR.


Indoles , Lysophospholipids , Osteogenesis , Polymers , Tissue Scaffolds , Tissue Scaffolds/chemistry , beta Catenin , Bone Regeneration , Durapatite/chemistry , Tissue Engineering/methods
7.
Inflammation ; 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38386131

We explored the sex difference in lung ischemia-reperfusion injury (LIRI) and the role and mechanism of estrogen (E2) and angiotensin II (Ang II) in LIRI. We established a model of LIRI in mice. E2, Ang II, E2 inhibitor (fulvestrant), and angiotensin II receptor blocker (losartan) were grouped for treatment. The lung wet/dry weight ratio, natural killer (NK) cells (by flow cytometry), neutrophils (by flow cytometry), expression of key proteins (by Western blot, immunohistochemistry, ELISA, and immunofluorescence), and expression of related protein mRNA (by qPCR) were detected. The ultrastructure of the alveolar epithelial cells was observed by transmission electron microscopy. We found that E2 and Ang II played an important role in the progression of LIRI. The two signaling pathways showed obvious antagonism, and E2 regulates LIRI in the different sexes by downregulating Ang II, leading to a better prognosis. E2 and losartan reduced the inflammatory cell infiltration in lung tissue and key inflammatory factors in serum while fulvestrant and Ang II had the opposite effect. The protective effect of E2 was related with AKT, p38, COX2, and HIF-1α.

8.
J Med Chem ; 67(4): 2602-2618, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38301128

To discover novel osteoclast-targeting antiosteoporosis leads from natural products, we identified 40 tanzawaic acid derivatives, including 22 new ones (1-8, 14-19, 27-32, 37, and 38), from the South China Sea mangrove-derived fungus Penicillium steckii SCSIO 41025. Penicisteck acid F (2), one of the new derivatives showing the most potent NF-κB inhibitory activity, remarkably inhibited osteoclast generation in vitro. Mechanistically, 2 reduced RANKL-induced IκBα degradation, NF-κB p65 nuclear translocation, the activation and nuclear translocation of NFATc1, and the relevant mRNA expression. NF-κB p65 could be a potential molecular target for 2, which has been further determined by the cellular thermal shift assay, surface plasmon resonance, and the gene knock-down assay. Moreover, 2 could also alleviate osteoporosis in ovariectomized mice by reducing the quantities of osteoclasts. Our finding offered a novel potential inhibitor of osteoclastogenesis and osteoporosis for further development of potent antiosteoporosis agents.


Bone Resorption , Osteoporosis , Animals , Mice , NF-kappa B/metabolism , Osteogenesis , Down-Regulation , Bone Resorption/drug therapy , Osteoclasts/metabolism , Osteoporosis/drug therapy , RANK Ligand/metabolism , Cell Differentiation , NFATC Transcription Factors/metabolism
9.
J Nat Prod ; 87(2): 322-331, 2024 02 23.
Article En | MEDLINE | ID: mdl-38334086

A strategy integrating in silico molecular docking with LXRα and phenotypic assays was adopted to discover anti-hypercholesterolemia agents in a small library containing 205 marine microorganism-derived natural products, collected by our group in recent years. Two fumitremorgin derivatives, 12R,13S-dihydroxyfumitremorgin C (1) and tryprostatin A (3), were identified as potential LXRα agonists, by real-time qPCR and Western blot (WB) analysis, together with a surface plasmon resonance (SPR) assay. The anti-hypercholesterolemic effects of 1 and 3, together with their mechanisms, were investigated in depth using different cell and mouse models, among which the study of LXRα is of crucial importance. Compound 1 or 3 exhibited the capacity to effectively reverse excessive lipid accumulation in a hepatic steatosis cell model and significantly reduce liver damage and blood cholesterol levels in high cholesterol diet (HCD)-fed wild-type mice, whereas those beneficial effects were completely nullified in HCD-fed LXRα-knockout mice. Furthermore, 1 and 3 outperformed common LXRα agonists by suppressing the expression of sterol regulatory element-binding protein 1 (SREBP1) in HCD-fed mice, mitigating lipotoxicity. Thus, this study highlights the discovery of two marine microorganism-derived anti-hypercholesterolemia agents targeting LXRα.


Hypercholesterolemia , Orphan Nuclear Receptors , Animals , Mice , Cholesterol/metabolism , Hypercholesterolemia/drug therapy , Liver , Liver X Receptors/metabolism , Mice, Knockout , Molecular Docking Simulation , Orphan Nuclear Receptors/metabolism , Orphan Nuclear Receptors/pharmacology
10.
Chem Biodivers ; 21(4): e202400070, 2024 Apr.
Article En | MEDLINE | ID: mdl-38356321

One new fatty acid derivative, (2E,4E)-6,7-dihydroxy-2-methylocta-2,4-dienoic acid (1), and 16 known compounds (2-17) were isolated from the mangrove sediment derived fungus Trichoderma harzianum SCSIO 41051. Their structures were established by spectroscopic methods, computational ECD, and Mo2(OAc)4-induced ECD experiment. All the compounds were evaluated for their acetylcholinesterase (AChE) and pancreatic lipase (PL) inhibition. Compounds 9 and 14 exhibited moderate AChE inhibitory activities with IC50 values of 2.49 and 2.92 µM, respectively, which compounds 8 and 9 displayed moderate inhibition on PL with IC50 value of 2.30 and 2.34 µM, respectively.


Hypocreales , Trichoderma , Acetylcholinesterase/metabolism , Enzyme Inhibitors/pharmacology , Hypocreales/chemistry , Molecular Structure , Trichoderma/chemistry , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/isolation & purification , Cholinesterase Inhibitors/pharmacology , Lipase/antagonists & inhibitors
11.
Arch Microbiol ; 206(1): 51, 2024 Jan 04.
Article En | MEDLINE | ID: mdl-38175208

Microbial biodegradation serves as an effective approach to treat oil pollution. However, the application of such methods for the degrading long-chain alkanes still encounters significant challenges. Comparative proteomics has extensively studied the intracellular proteins of bacteria that degrade short- and medium-chain alkanes, but the role and mechanism of extracellular proteins in many microorganism remain unclear. To enhance our understanding of the roles of extracellular proteins in the adaptation to long-chain alkanes, a label-free LC-MS/MS strategy was applied for the relative quantification of extracellular proteins of Pseudomonas aeruginosa SJTD-1-M (ProteomeXchange identifier PXD014638). 444 alkane-sentitive proteins were acquired and their cell localization analysis was performed using the Pseudomonas Genome Database. Among them, 111 proteins were found to be located in extracellular or Outer Membrane Vesicles (OMVs). The alkane-induced abundance of 11 extracellular or OMV target proteins was confirmed by parallel reaction monitoring (PRM). Furthermore, we observed that the expression levels of three proteins (Pra, PA2815, and FliC) were associated with the carbon chain length of the added alkane in the culture medium. The roles of these proteins in cell mobility, alkane emulsification, assimilation, and degradation were further discussed. OMVs were found to contain a number of enzymes involved in alkane metabolism, fatty acid beta-oxidation, and the TCA cycle, suggesting their potential as sites for facilitated alkane degradation. In this sense, this exoproteome analysis contributes to a better understanding of the role of extracellular proteins in the hydrocarbon treatment process.


Pseudomonas Infections , Pseudomonas aeruginosa , Humans , Pseudomonas aeruginosa/genetics , Alkanes , Chromatography, Liquid , Tandem Mass Spectrometry , Pseudomonas
12.
Chem Biodivers ; 21(4): e202302069, 2024 Apr.
Article En | MEDLINE | ID: mdl-38246882

Two new dihydroisocoumarins, exserolides L and M (1 and 2), along with six known compounds (3-8) were isolated from the extract of the marine-sponge-derived fungus Setosphaeria sp. SCSIO41009. Their structures were established by spectroscopic analyses. The absolute configurations of two new compounds were determined by modified Mosher's method and ECD data. Compounds 1 and 4 showed significant antiviral activities against A/Puerto Rico/8/34 H274Y (H1 N1) with IC50 values of 4.07±0.76 µM and 20.06±4.85 µM, respectively.


Ascomycota , Isocoumarins , Molecular Structure , Isocoumarins/chemistry , Ascomycota/chemistry
13.
Chem Biodivers ; 21(2): e202301706, 2024 Feb.
Article En | MEDLINE | ID: mdl-38079052

Based on the one strain many compounds strategy, a new brominated isocoumarin, 5-bromo-6,8-dihydroxy-3,7-dimethylisocoumarin (1), along with four new natural products, methyl 3-bromo-2,4-dihydroxy-6-methylbenzoate (2), methyl 2-bromo-4,6-dihydroxybenzoate (3), (E)-3-(3-bromo-4-hydroxyphenyl) acrylic acid (4) and 4-hydroxy-3-methyl-6-phenyl-2H-pyran-2-one (5), and four known compounds, methyl orsellinate (6), 4-hydroxy-3-methyl-6-(1-methyl-1-propenyl)-2H-pyran-2-one (7), pilobolusate (8) and cis-ferulic acid (9), were isolated from the ethyl acetate extract of the fungus Aspergillus sp. WXF1904 under the condition of adding bromine salt to the production medium. The structures of the new compounds were established by analysis of NMR and MS data. Compounds (1-9) were evaluated for inhibitory activity of acetylcholinesterase and pancreatic lipase, the new compound 1, known compounds 6 and 7 displayed weak inhibitory activity against acetylcholinesterase, compounds 2, 5, 7 and 8 showed weak inhibitory activity against pancreatic lipase.


Acetylcholinesterase , Isocoumarins , Aspergillus/chemistry , Fungi , Isocoumarins/chemistry , Lipase , Molecular Structure , Benzoates/chemistry
14.
Gen Hosp Psychiatry ; 86: 58-66, 2024.
Article En | MEDLINE | ID: mdl-38101151

OBJECTIVE: Prognostic nutritional index (PNI) is an indicator to evaluate the nutritional immune status of patients. This study aimed to assess whether preoperative PNI could predict the occurrence of postoperative POD in aged patients undergoing non-neurosurgery and non-cardiac surgery. METHOD: The aged patients undergoing non-neurosurgery and non-cardiac surgery between January 2014 and August 2019 were included in the retrospective cohort study. The correlation between POD and PNI was investigated by univariate and multivariable logistic regression analysis, propensity score matching (PSM), inverse probability of treatment weighting (IPTW), and subgroup analysis. RESULTS: In the cohort (n = 29,814), the cutoff value of PNI was 46.01 determined by the receiver operating characteristic (ROC) curve. In univariate and three multivariable regression analysis, the ORs of PNI ≤ 46.01 was 2.573(95% CI:2.261-2.929, P < 0.001),1.802 (95% CI:1.567-2.071, P < 0.001),1.463(95% CI:1.246-1.718, P < 0.001),1.370(95% CI:1.165-1.611, P < 0.001). In the PSM model and IPTW model, the ORs of PNI ≤ 46.01 were 1.424(95% CI:1.172-1.734, P < 0.001) and 1.356(95% CI:1.223-1.505, P < 0.001). CONCLUSION: The PNI was found to have a predictive value for POD in patients undergoing non-neurosurgery and non-cardiac surgery. Improving preoperative nutritional status may be beneficial in preventing POD for aged patients.


Emergence Delirium , Nutrition Assessment , Humans , Aged , Retrospective Studies , Prognosis , Cohort Studies , Nutritional Status
15.
Eur J Med Chem ; 265: 116068, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38141284

Thirteen new sirenin derivatives named eupenicisirenins C-O (1-13), along with a biosynthetically related known one (14), were isolated from the mangrove sediment-derived fungus Penicillium sp. SCSIO 41410. The structures, which possessed a rare cyclopropane moiety, were confirmed by extensive analyses of the spectroscopic data, quantum chemical calculations, and X-ray diffraction. Among them, eupenicisirenin C (1) exhibited the strongest NF-κB inhibitory activities, as well as suppressing effects on cGAS-STING pathway. Moreover, 1 showed the significant inhibitory effect on RANKL-induced osteoclast differentiation in bone marrow macrophages cells, and also displayed the therapeutic potential on prednisolone-induced zebrafish osteoporosis. Transcriptome analysis and the following verification tests suggested that its anti-osteoporotic mechanism is related to the extracellular matrix receptor interaction-related pathways. This study provided a promising marine-derived anti-osteoporotic agent for the treatment of skeletal disease.


Osteoporosis , Penicillium , Animals , Fungi/metabolism , Macrophages , NF-kappa B/metabolism , Osteoporosis/drug therapy , Penicillium/chemistry , Zebrafish/metabolism , Bridged Bicyclo Compounds/chemistry
16.
Molecules ; 28(21)2023 Oct 24.
Article En | MEDLINE | ID: mdl-37959666

Four new sesterterpenes, arthproliferins A-D (1-4), together with four known derivatives, were isolated and characterized from the mangrove-sediment-derived fungus Arthrinium sp. SCSIO41221. Their structures were determined using detailed nuclear magnetic resonance (NMR) and mass spectroscopic (MS) analyses. Some of the isolated compounds were evaluated for their cytotoxicity in vitro. The results revealed that terpestacin (6) exhibited significant activity with an IC50 value of 20.3 µM, and compounds 2 and 5 were found to show weak inhibitory effects against U87MG-derived GSCs.


Sesterterpenes , Xylariales , Sesterterpenes/chemistry , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Structure
17.
J Virol ; 97(11): e0130623, 2023 Nov 30.
Article En | MEDLINE | ID: mdl-37943055

IMPORTANCE: In this study, we have found that the existence of Smyd3 promoted the replication of SCRV. Additionally, we report that Smyd3 negatively regulates the NF-κB and IRF3 signaling pathway by facilitating the degradation of TAK1 in fish. Our findings suggest that Smyd3 interacts with TAK1. Further investigations have revealed that Smyd3 specifically mediates K48-linked ubiquitination of TAK1 and enhances TAK1 degradation, resulting in a significant inhibition of the NF-κB and IRF3 signaling pathway. These results not only contribute to the advancement of fish anti-viral immunity but also provide new evidence for understanding the mechanism of TAK1 in mammals.


Fish Diseases , Interferon Regulatory Factor-3 , MAP Kinase Kinase Kinases , NF-kappa B , Signal Transduction , Animals , MAP Kinase Kinase Kinases/metabolism , NF-kappa B/metabolism , Ubiquitination , Fish Diseases/virology , Fishes , Rhabdoviridae , Interferon Regulatory Factor-3/metabolism
18.
Nat Prod Res ; : 1-13, 2023 Nov 07.
Article En | MEDLINE | ID: mdl-37933448

Two new alkaloids, Aspera chaetominines A (1) and B (2), a new derivative (3) of terrein, and together with 11 known compounds (4-14) were isolated from marine sponge Callyspongia sp. -derived fungus Aspergillus versicolour SCSIO XWS04 F52, which was identified on the basis of morphology and ITS sequence analysis. The planar structures of 1-3 were determined by spectroscopic (1H, 13C NMR, HSQC, HMBC, and 1H-1H COSY), and MS analysis. Compounds 1 and 2 showed cytotoxic activity against leukaemia K562 and colon cancer cells SW1116 with IC50 7.5 to 12.5 µM, and also compounds 1 and 2 exhibited significant protection against H1N1 virus-induced cytopathogenicity in MDCK cells with IC50 values of 15.5 and 24.5 µM, respectively.

19.
Mar Drugs ; 21(11)2023 Oct 29.
Article En | MEDLINE | ID: mdl-37999391

The coral-derived fungus Aspergillus austwickii SCSIO41227 from Beibu Gulf yielded four previously uncharacterized compounds, namely asperpentenones B-E (1-4), along with twelve known compounds (5-16). Their structures were elucidated using HRESIMS and NMR (1H and 13C NMR, HSQC, HMBC), among which the stereo-structure of compounds 1-3 was determined by calculated ECD. Furthermore, compounds 1-16 were evaluated in terms of their enzyme (acetylcholinesterase (AChE), pancreatic lipase (PL), and neuraminidase (NA)) inhibitory activities. These bioassay results revealed that compounds 2 and 14 exerted noticeable NA inhibitory effects, with IC50 values of 31.28 and 73.64 µM, respectively. In addition, compound 3 exhibited a weak inhibitory effect against PL. Furthermore, these compounds showed the potential of inhibiting enzymes in silico docking analysis to demonstrate the interactions between compounds and proteins.


Anthozoa , Neuraminidase , Animals , Lipase/metabolism , Acetylcholinesterase/metabolism , Aspergillus/chemistry , Anthozoa/metabolism , Molecular Structure
20.
Nat Prod Res ; : 1-6, 2023 Nov 22.
Article En | MEDLINE | ID: mdl-37990846

One new alkaloid, named pyripyropene U (1), and six known natural products (2-7) were obtained from the marine sponge-derived fungus Aspergillus sp. SCSIO41420. Their structures were determined by detailed nuclear magnetic resonance (NMR) and mass spectroscopic (MS) analyses, while the absolute configurations of the new compound were unambiguously confirmed by theoretical electronic circular dichroism (ECD) calculation. Those natural products were evaluated in the antimicrobial tests against various fungi and bacteria, and 7 possessed obvious inhibitory activity against Staphylococcus aureus ATCC 29213.

...