Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 98
1.
Inorg Chem ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38723026

Highly crystalline ZSM-23 zeolite, exhibiting a distinctive dumbbell morphology, was synthesized via a hydrothermal method. Bifunctional catalysts, comprising single metals (Pt or Au) and bimetals (Pt-Au), were successfully prepared by using a positional precipitation method. The hydroisomerization of hexadecane served as a model reaction to assess the catalytic performance arising from the synergistic effects of bimetallic active sites. In comparison to single-metal catalysts, 0.3Au0.7Pt/ZSM-23 demonstrated increased n-C16 conversion, while 0.5Au0.5Pt/ZSM-23 exhibited enhanced i-C16 selectivity, achieving the highest i-C16 yield. The bimetallic catalyst not only finely tuned the metal site activity through bimetallic synergy but also achieved a superior balance between metal and acid catalysis, resulting in improved catalytic performance in the n-C16 hydroisomerization. The Pt-Au bimetallic catalyst approached the ideal requirements for a hydroisomerization catalyst, achieving a harmonious balance of metal and acid catalysis.

2.
J Colloid Interface Sci ; 660: 692-702, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38271805

Tetracycline (TC) antibiotics have been widely used over the past decades, and their massive discharge led to serious water pollution. Photo-Fenton process has gained ever-increasing attention for its excellent oxidizing ability and friendly solar energy utilization ability in TC polluted water treatment. This work introduced coordinative Fe into oxygen-enriched graphite carbon nitride (OCN) to form FeOCN composites for efficient photo-Fenton process. Hemin was chosen as the source to provide the source of coordinative Fe-Nx groups. The degradation efficiency of TC reached 82.1 % within 40 min of irradiation, and remained 76.9 % after five runs of reaction. The degradation intermediates of TC were detected and the possible degradation pathways were gained. It was found that h+, OH, and O2- played major roles in TC degradation. Notably, the photo-Fenton performance of FeOCN was stable in highly saline water or strong acid/base environment (pH 3.0-9.0). Besides, H2O2 can be generated in-situ in this photo-Fenton process, which is favorable for practical application. It can be anticipated that the coordinative FeOCN composites will promote the application of photo-Fenton oxidation process in TC polluted water treatment.

3.
Small ; 20(7): e2306621, 2024 Feb.
Article En | MEDLINE | ID: mdl-37814375

Future renewable energy supply and green, sustainable environmental development rely on various types of catalytic reactions. Copper single-atom catalysts (Cu SACs) are attractive due to their distinctive electronic structure (3d orbitals are not filled with valence electrons), high atomic utilization, and excellent catalytic performance and selectivity. Despite numerous optimization studies are conducted on Cu SACs in terms of energy conversion and environmental purification, the coupling among Cu atoms-support interactions, active sites, and catalytic performance remains unclear, and a systematic review of Cu SACs is lacking. To this end, this work summarizes the recent advances of Cu SACs. The synthesis strategies of Cu SACs, metal-support interactions between Cu single atoms and different supports, modification methods including modification for carriers, coordination environment regulating, site distance effect utilizing, and dual metal active center catalysts constructing, as well as their applications in energy conversion and environmental purification are emphatically introduced. Finally, the opportunities and challenges for the future Cu SACs development are discussed. This review aims to provide insight into Cu SACs and a reference for their optimal design and wide application.

4.
Small ; 20(5): e2305579, 2024 Feb.
Article En | MEDLINE | ID: mdl-37788902

The photothermal process has attracted considerable attention in water treatment due to its advantages of low energy consumption and high efficiency. In this respect, photothermal materials play a crucial role in the photothermal process. Particularly, carbonaceous materials have emerged as promising candidates for this process because of exceptional photothermal performance. While previous research on carbonaceous materials has primarily focused on photothermal evaporation and sterilization, there is now a growing interest in exploring the potential of photothermal effect-assisted advanced oxidation processes (AOPs). However, the underlying mechanism of the photothermal effect assisted by carbonaceous materials remains unclear. This review aims to provide a comprehensive review of the photothermal process of carbonaceous materials in water treatment. It begins by introducing the photothermal properties of carbonaceous materials, followed by a discussion on strategies for enhancing these properties. Then, the application of carbonaceous materials-based photothermal process for water treatment is summarized. This includes both direct photothermal processes such as photothermal evaporation and sterilization, as well as indirect photothermal processes that assisted AOPs. Meanwhile, various mechanisms assisted by the photothermal effect are summarized. Finally, the challenges and opportunities of using carbonaceous materials-based photothermal processes for water treatment are proposed.

5.
Chemosphere ; 344: 140395, 2023 Dec.
Article En | MEDLINE | ID: mdl-37820881

Photocatalysis is currently a hot research field, which provides promising processes to produce green energy sources and other useful products, thus eventually benefiting carbon emission reduction and leading to a low-carbon future. The development and application of stable and efficient photocatalytic materials is one of the main technical bottlenecks in the field of photocatalysis. Perovskite has excellent performance in the fields of photocatalytic hydrogen evolution reaction (HER), oxygen evolution reaction (OER), carbon dioxide reduction reaction (CO2RR), organic synthesis and pollutant degradation due to its unique structure, flexibility and resulting excellent photoelectric and catalytic properties. The stability problems caused by perovskite's susceptibility to environmental influences hinder its further application in the field of photocatalysis. Therefore, this paper innovatively summarizes and analyzes the existing methods and strategies to improve the stability of perovskite in the field of photocatalysis. Specifically, (i) component engineering, (ii) morphological control, (iii) hybridization and encapsulation are thought to improve the stability of perovskites while improving photocatalytic efficiency. Finally, the challenges and prospects of perovskite photocatalysts are discussed, which provides constructive thinking for the potential application of perovskite photocatalysts.


Environmental Pollutants , Iodine , Calcium Compounds , Catalysis , Energy-Generating Resources
6.
Int J Mol Sci ; 24(16)2023 Aug 09.
Article En | MEDLINE | ID: mdl-37628762

Phoebe bournei is nationally conserved in China due to its high economic value and positive effect on the ecological environment. P. bournei has an excellent wood structure, making it useful for industrial and domestic applications. Despite its importance, there are only a few studies on the lateral organ boundary domain (LBD) genes in P. bournei. The LBD gene family contributes to prompting rooting in multiple plant species and therefore supports their survival directly. To understand the LBD family in P. bournei, we verified its characteristics in this article. By comparing the sequences of Arabidopsis and identifying conserved domains and motifs, we found that there were 38 members of the LBD family in P. bournei, which were named PbLBD1 to PbLBD38. Through evolutionary analysis, we found that they were divided into two different populations and five subfamilies in total. The LBD gene family in P. bournei (Hemsl.) Yang species had two subfamilies, including 32 genes in Class I and 6 genes in Class II. It mainly consists of a Lateral Organ Boundary (LOB) conservative domain, and the protein structure is mostly "Y"-shaped. The gene expression pattern of the LBD gene family showed that the LBD genes were mainly expressed in lateral organs of plants, such as flowers and fruits. The response of LBD transcription factors to red and blue light was summarized, and several models of optogenetic expression regulation were proposed. The effect of regulatory mechanisms on plant rooting was also predicted. Moreover, quantitative real-time PCR (qRT-PCR) revealed that most PbLBDs were differentially expressed under cold, heat, drought, and salt stresses, indicating that PbLBDs might play different functions depending on the type of abiotic stress. This study provides the foundation for further research on the function of LBD in this tree species in the future.


Arabidopsis , Lauraceae , Biological Evolution , China , Droughts
7.
J Hazard Mater ; 460: 132363, 2023 Oct 15.
Article En | MEDLINE | ID: mdl-37633017

As a rising branch of advanced oxidation processes, persulfate activation has attracted growing attention. Unlike catalysts that have been widely studied, the selection of persulfate is previously overlooked. In this study, the affecting factors of persulfates were studied. The effect of target pollutant properties on superior persulfate species (the species with a higher degradation efficiency) was investigated by multiwalled carbon nanotube (MWCNT)/persulfate catalytic systems. Innovatively, the EHOMO (or vertical ionization potential (VIP)) value of the target pollutant was proposed to be an index to judge the superior persulfate species, and the threshold is VIP= 6.397-6.674 eV, EHOMO= -8.035∼- 7.810 eV, respectively. To be specific, when the VIP of phenolic compounds is higher (or EHOMO of phenolic compounds is lower) than the threshold, the catalytic performance of peroxymonosulfate would be higher than that of peroxydisulfate. Moreover, the effects of coexisting cations on peroxydisulfate superior species were further investigated. It was illustrated that the hydrated cation radius of coexisting cations would influence the pollutant degradation efficiency under some circumstances. This study provides a new approach to improve the cost of persulfate activation systems and promotes the underlying downstream application of persulfate activation systems.

8.
Structure ; 31(10): 1220-1232.e5, 2023 Oct 05.
Article En | MEDLINE | ID: mdl-37652001

Structural diverse natural products like ribosomally synthesized and posttranslationally modified peptides (RiPPs) display a wide range of biological activities. Currently, the mechanism of an uncommon reaction step during the biosynthesis of 3-thiaglutamate (3-thiaGlu) is poorly understood. The removal of the ß-carbon from the Cys in the TglA-Cys peptide catalyzed by the TglHI holoenzyme remains elusive. Here, we present three crystal structures of TglHI complexes with and without bound iron, which reveal that the catalytic pocket is formed by the interaction of TglH-TglI and that its activation is conformation dependent. Biochemical assays suggest a minimum of two iron ions in the active cluster, and we identify the position of a third iron site. Collectively, our study offers insights into the activation and catalysis mechanisms of the non-heme dioxygen-dependent holoenzyme TglHI. Additionally, it highlights the evolutionary and structural conservation in the DUF692 family of biosynthetic enzymes that produce diverse RiPPs.


Iron , Peptides , Peptides/chemistry , Molecular Conformation , Holoenzymes/metabolism , Iron/metabolism , Protein Processing, Post-Translational
9.
Sci Total Environ ; 904: 166180, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37562617

Due to the widespread commercial production and use of brominated flame retardants (BFRs) in China, their potential impact on human health development should not be underestimated. This review searched the literature on Polybrominated diphenyl ethers and Novel brominated flame retardant (PBDEs and NBFRs) (broad BFRs) in the aquatic environment (including surface water and sediment) in China over the last decade. It was found that PBDEs and NBFRs entered the aquatic environment through four main pathways, atmospheric deposition, surface runoff, sewage effluent and microplastic decomposition. The distribution of PBDEs and NBFRs in the aquatic environment was highly correlated with the local economic structure and population density. In addition, a preliminary risk assessment of existing PBDEs and PBDEs in sediments showed that areas with high-risk quotient values were always located in coastal areas with e-waste dismantling sites, which was mainly attributed to the historical legacy of electronic waste. This research provides help for the human health development and regional risk planning management posed by PBDEs and NBFRs.


Flame Retardants , Water Pollutants, Chemical , China , Environmental Monitoring , Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis , Plastics , Risk Assessment , Water Pollutants, Chemical/analysis
10.
J Hazard Mater ; 457: 131800, 2023 Sep 05.
Article En | MEDLINE | ID: mdl-37302189

Heterogeneous Fenton-like process based on H2O2 activation has been widely tested for water purification, but its application still faces some challenges such as the use of high doses of chemicals (including catalysts and H2O2). Herein, a facile co-precipitation method was utilized for small-scale production (∼50 g) of oxygen vacancies (OVs)-containing Fe3O4 (Vo-Fe3O4) for H2O2 activation. Experimental and theoretical results collaboratively verified that H2O2 adsorbed on the Fe site of Fe3O4 tended to lose electrons and generate O2•-. While the localized electron from OVs of Vo-Fe3O4 could assist in donating electrons to H2O2 adsorbed on OVs sites, this allowed more H2O2 to be activated to •OH, which was 3.5 folds higher than Fe3O4/H2O2 system. Moreover, the OVs sites promoted dissolved oxygen activation and decreased the quenching of O2•- by Fe(III), thus promoting the generation of 1O2. Consequently, the fabricated Vo-Fe3O4 achieved much higher oxytetracycline (OTC) degradation rate (91.6%) than Fe3O4 (35.4%) at a low catalyst (50 mg/L) and H2O2 dosage (2 mmol/L). Importantly, further integration of Vo-Fe3O4 into fixed-bed Fenton-like reactor could effectively eliminate OTC (>80%) and chemical oxygen demand (COD) (21.3%∼50%) within the running period. This study provides promising strategies for enhancing the H2O2 utilization of Fe mineral.

11.
Oncol Lett ; 26(1): 305, 2023 Jul.
Article En | MEDLINE | ID: mdl-37323818

This retrospective clinical study described the treatment efficacy and safety of stereotactic body radiotherapy (SBRT) for patients of hepatocellular carcinoma (HCC) and liver metastasis tumors. The therapeutic effect and prognosis of patients with liver cancer treated with stereotactic body radiation therapy (SBRT) at the Fudan University Shanghai Cancer Center (Shanghai, China) between July 2011 and December 2020 were retrospectively analyzed. Overall survival (OS), local control (LC) rates and progression-free survival (PFS) were evaluated using Kaplan-Meier analysis and the log-rank test. Local progression was defined as tumor growth after SBRT on dynamic computed tomography follow-up. Treatment-related toxicities were assessed according to the Common Terminology Criteria for Adverse Events version 4. A total of 36 patients with liver cancer were enrolled in the present study. The prescribed dosages (14 Gy in 3 fractions or 16 Gy in 3 fractions) were applied for SBRT treatments. The median follow-up time was 21.4 months. The median OS time was 20.4 [95% confidence interval (CI): 6.6-34.2] months, and the 2-year OS rates for the total population, HCC group and liver metastasis group were 47.5, 73.3 and 34.2%, respectively. The median PFS time was 17.3 (95% CI: 11.8-22.8) months and the 2-year PFS rates for the total population, HCC group and liver metastasis group were 36.3, 44.0 and 31.4%, respectively. The 2-year LC rates for the total population, HCC group and liver metastasis group were 83.4, 85.7 and 81.6%, respectively. The most common grade IV toxicity for the HCC group was liver function impairment (15.4%), followed by thrombocytopenia (7.7%). There were no grade III/IV radiation pneumonia or digestive discomfort. The present study aimed to explore a safe, effective and non-invasive treatment method for liver tumors. At the same time, the innovation of the present study is to find a safe and effective prescription dose of SBRT in the absence of consensus on guidelines.

12.
Annu Rev Food Sci Technol ; 14: 247-269, 2023 03 27.
Article En | MEDLINE | ID: mdl-36972153

In contrast to traditional breeding, which relies on the identification of mutants, metabolic engineering provides a new platform to modify the oil composition in oil crops for improved nutrition. By altering endogenous genes involved in the biosynthesis pathways, it is possible to modify edible plant oils to increase the content of desired components or reduce the content of undesirable components. However, introduction of novel nutritional components such as omega-3 long-chain polyunsaturated fatty acids needs transgenic expression of novel genes in crops. Despite formidable challenges, significant progress in engineering nutritionally improved edible plant oils has recently been achieved, with some commercial products now on the market.


Fatty Acids, Omega-3 , Plants, Edible , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plants, Edible/genetics , Plants, Edible/metabolism , Plant Oils , Fatty Acids, Omega-3/metabolism , Metabolic Engineering , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Seeds/genetics , Seeds/metabolism
13.
Water Res ; 234: 119808, 2023 May 01.
Article En | MEDLINE | ID: mdl-36889085

Proper wastewater treatment has always been the focus of human society, and many researchers have been working to find efficient and stable wastewater treatment technologies. Persulfate-based advanced oxidation processes (PS-AOPs) mainly rely on persulfate activation to form reactive species for pollutants degradation and are considered to be one of the most effective wastewater treatment technologies. Recently, metal-carbon hybrid materials have been diffusely used for PS activation because of their high stability, abundant active sites, and easy applicability. Metal-carbon hybrid materials can successfully overcome the shortcomings of onefold metal catalysts and carbon catalysts by combing the complementary advantages of the two components. This article reviews recent studies about metal-carbon hybrid materials-mediated PS-AOPs for wastewater decontamination. The interactions of metal and carbon materials, as well as the active sites of metal-carbon hybrid materials, are introduced first. Then, the application and mechanism of metal-carbon hybrid materials-mediated PS activation are presented in detail. Lastly, the modulation methods of metal-carbon hybrid materials and their tunable reaction pathways were discussed. The prospect of future development directions and challenges is proposed to facilitate metal-carbon hybrid materials-mediated PS-AOPs to take a step further for practical application.


Carbon , Water Pollutants, Chemical , Humans , Wastewater , Oxidation-Reduction , Metals , Water Pollutants, Chemical/chemistry
14.
Water Res ; 233: 119719, 2023 Apr 15.
Article En | MEDLINE | ID: mdl-36801583

Organic pollutants removal from water is pressing owing to the great demand for clean water. Oxidation processes (OPs) are the commonly used method. However, the efficiency of most OPs is limited owing to the poor mass transfer process. Spatial confinement is a burgeoning way to solve this limitation by use of nanoreactor. Spatial confinement in OPs would (i) alter the transport characteristics of protons and charges; (ii) bring about molecular orientation and rearrangement; (iii) cause the dynamic redistribution of active sites in catalyst and reduce the entropic barrier that is high in unconfined space. So far, spatial confinement has been utilized for various OPs, such as Fenton, persulfate, and photocatalytic oxidation. A comprehensive summary and discussion on the fundamental mechanisms of spatial confinement mediated OPs is needed. Herein, the application, performance and mechanisms of spatial confinement mediated OPs are overviewed firstly. Subsequently, the features of spatial confinement and their effects on OPs are discussed in detail. Furthermore, environmental influences (including environmental pH, organic matter and inorganic ions) are studied with analyzing their intrinsic connection with the features of spatial confinement in OPs. Lastly, challenges and future development direction of spatial confinement mediated OPs are proposed.


Environmental Pollutants , Water Pollutants, Chemical , Water , Oxidation-Reduction , Water Pollutants, Chemical/analysis
15.
Sci Total Environ ; 870: 162024, 2023 Apr 20.
Article En | MEDLINE | ID: mdl-36740069

Due to the synergistic effects of biochar and compost/composting, the combined application of biochar and compost (biochar-compost) has been recognized as a highly promising and efficient method of soil improvement. However, the willingness to apply biochar-compost for soil improvement is still low compared to the use of biochar or compost alone. This paper collects data on the application of biochar-compost in several problem soils that are well-known and extensively investigated by agronomists and scientists, and summarizes the effects of biochar-compost application in common problem soils. These typical problem soils are classified based on three different characteristics: climatic zones, abiotic stresses, and contaminants. The improvement effect of biochar-compost in different soils is assessed and directions for further research and suggestions for application are made. Generally, biochar-compost mitigates the high mineralization rate of soil organic matter, phosphorus deficiency and aluminum toxicity, and significantly improves crop yields in most tropical soils. Biochar-compost can help to achieve long-term sustainable management of temperate agricultural soils by sequestering carbon and improving soil physicochemical properties. Biochar-compost has shown positive performance in the remediation of both dry and saline soils by reducing the threat of soil water scarcity or high salinity and improving the consequent deterioration of soil conditions. By combining different mechanisms of biochar and compost to immobilize or remove contaminants, biochar-compost tends to perform better than biochar or compost alone in soils contaminated with heavy metals (HMs) or organic pollutants (OPs). This review aims to improve the practicality and acceptability of biochar-compost and to promote its application in soil. Additionally, the prospects, challenges and future directions for the application of biochar-compost in problem soil improvement were foreseen.


Composting , Metals, Heavy , Soil Pollutants , Soil/chemistry , Soil Pollutants/analysis , Metals, Heavy/analysis , Charcoal/chemistry
16.
Sci Total Environ ; 864: 161062, 2023 Mar 15.
Article En | MEDLINE | ID: mdl-36565867

Biochar has been frequently used as a persulfate (PS) activator due to its attractive properties, but dissolved organic matter (DOM) derived from the non­carbonized part of biochar has received less attention, not to mention its specific role and impact in biochar/PS systems. In this study, wheat straw, municipal sludge, and swine bone were selected as the representative feed stocks of biochar. Subsequently, these three types of biochar were adopted to explore the roles of DOM in biochar/PS systems. Although the composition and amount of DOM derived from different biochar were discrepant, they exhibited similar effect in biochar/PS systems. To be specific, the pore-clogging effect of DOM on biochar suppressed the adsorption capacity and catalytic performance of the three biochar. Furthermore, the removal of DOM decreased the environmental risk of these biochar/PS systems and enhanced the stability of the involved biochar. With respect to the variation in degradation mechanism, the removal of DOM increased the proportion of electron transfer pathway in unison, but the diminution in the roles of O2•¯ and 1O2 was more remarkable in bone-derived-biochar/PS systems. Additionally, the toxicity test illustrated that the leakage and accumulation of DOM were toxic to Chlorella sp., and the DOM from sludge-derived-biochar presented the highest toxicity. Overall, this study analyzes the roles of DOM derived from different biochar in biochar/PS systems and evaluates their environmental risk, which contributes to a comprehensive understanding of the fate of DOM derived from biochar.


Chlorella , Dissolved Organic Matter , Sewage , Charcoal
17.
Biotechnol Biofuels Bioprod ; 15(1): 93, 2022 Sep 12.
Article En | MEDLINE | ID: mdl-36096884

BACKGROUND: JAZ subfamily plays crucial roles in growth and development, stress, and hormone responses in various plant species. Despite its importance, the structural and functional analyses of the JAZ subfamily in Brassica napus are still limited. RESULTS: Comparing to the existence of 12 JAZ genes (AtJAZ1-AtJAZ12) in Arabidopsis, there are 28, 31, and 56 JAZ orthologues in the reference genome of B. rapa, B. oleracea, and B. napus, respectively, in accordance with the proven triplication events during the evolution of Brassicaceae. The phylogenetic analysis showed that 127 JAZ proteins from A. thaliana, B. rapa, B. oleracea, and B. napus could fall into five groups. The structure analysis of all 127 JAZs showed that these proteins have the common motifs of TIFY and Jas, indicating their conservation in Brassicaceae species. In addition, the cis-element analysis showed that the main motif types are related to phytohormones, biotic and abiotic stresses. The qRT-PCR of the representative 11 JAZ genes in B. napus demonstrated that different groups of BnJAZ individuals have distinct patterns of expression under normal conditions or treatments with distinctive abiotic stresses and phytohormones. Especially, the expression of BnJAZ52 (BnC08.JAZ1-1) was significantly repressed by abscisic acid (ABA), gibberellin (GA), indoleacetic acid (IAA), polyethylene glycol (PEG), and NaCl treatments, while induced by methyl jasmonate (MeJA), cold and waterlogging. Expression pattern analysis showed that BnC08.JAZ1-1 was mainly expressed in the vascular bundle and young flower including petal, pistil, stamen, and developing ovule, but not in the stem, leaf, and mature silique and seed. Subcellular localization showed that the protein was localized in the nucleus, in line with its orthologues in Arabidopsis. Overexpression of BnC08.JAZ1-1 in Arabidopsis resulted in enhanced seed weight, likely through regulating the expression of the downstream response genes involved in the ubiquitin-proteasome pathway and phospholipid metabolism pathway. CONCLUSIONS: The systematic identification, phylogenetic, syntenic, and expression analyses of BnJAZs subfamily improve our understanding of their roles in responses to stress and phytohormone in B. napus. In addition, the preliminary functional validation of BnC08.JAZ1-1 in Arabidopsis demonstrated that this subfamily might also play a role in regulating seed weight.

18.
Sci Total Environ ; 851(Pt 1): 158099, 2022 Dec 10.
Article En | MEDLINE | ID: mdl-35988619

The degradable properties of degradable plastics allow them to form microplastics (MPs) faster. Therefore, degradable MPs may easily be transported in the underground environment. Research on degradable MPs transport in porous media is necessary and urgent. In this study, polylactic acid (PLA) and polyvinyl chloride (PVC) were selected to compare the transport differences between degradable and nondegradable MPs under different factors (flow rates, ionic strengths (ISs), pH, and coexisting cations) through column experiments, and UV irradiation was used to further simulate the effect of aging on different types of MPs. Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) were used to characterize functional groups and to determine the surface elements of MPs, respectively. The results showed that MPs were more mobile at higher flow rate, lower IS, higher pH, and monovalent cations. The order of transport capacity of MPs was PVC < aged PVC < PLA < aged PLA. This result was mainly attributed to the more negative Zeta potential and higher dispersion stability of aged PLA and PLA, which were caused by abundant O-functional groups. Compared with PVC, the O/C ratio of PLA increased significantly after aging, indicating that PLA was more prone to aging. The advection-dispersion-equation (ADE) fitted the transport data of MPs well. The interaction energy of MPs and quartz sand was accurately predicted by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. This work contributes to a comprehensive understanding of the transport of degradable MPs in the environment.


Microplastics , Plastics , Cations, Monovalent , Plastics/chemistry , Polyesters , Polyvinyl Chloride , Porosity , Quartz , Sand , Spectroscopy, Fourier Transform Infrared
19.
Int J Mol Sci ; 23(14)2022 Jul 21.
Article En | MEDLINE | ID: mdl-35887387

Heat shock transcription factors (HSFs) activate heat shock protein gene expression by binding their promoters in response to heat stress and are considered to be pivotal transcription factors in plants. Eucalyptus is a superior source of fuel and commercial wood. During its growth, high temperature or other abiotic stresses could impact its defense capability and growth. Hsf genes have been cloned and sequenced in many plants, but rarely in Eucalyptus. In this study, we used bioinformatics methods to analyze and identify Eucalyptus Hsf genes, their chromosomal localization and structure. The phylogenetic relationship and conserved domains of their encoded proteins were further analyzed. A total of 36 Hsf genes were identified and authenticated from Eucalyptus, which were scattered across 11 chromosomes. They could be classified into three classes (A, B and C). Additionally, a large number of stress-related cis-regulatory elements were identified in the upstream promoter sequence of HSF, and cis-acting element analysis indicated that the expression of EgHsf may be regulated by plant growth and development, metabolism, hormones and stress responses. The expression profiles of five representative Hsf genes, EgHsf4, EgHsf9, EgHsf13, EgHsf24 and EgHsf32, under salt and temperature stresses were examined by qRT-PCR. The results show that the expression pattern of class B genes (EgHsf4, EgHsf24 and EgHsf32) was more tolerant to abiotic stresses than that of class A genes (EgHsf9 and EgHsf13). However, the expressions of all tested Hsf genes in six tissues were at different levels. Finally, we investigated the network of interplay between genes, and the results suggest that there may be synergistic effects between different Hsf genes in response to abiotic stresses. We conclude that the Hsf gene family played an important role in the growth and developmental processes of Eucalyptus and could be vital for maintaining cell homeostasis against external stresses. This study provides basic information on the members of the Hsf gene family in Eucalyptus and lays the foundation for the functional identification of related genes and the further investigation of their biological functions in plant stress regulation.


Eucalyptus , Eucalyptus/genetics , Eucalyptus/metabolism , Gene Expression Regulation, Plant , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Phylogeny , Plant Proteins/metabolism , Sodium Chloride/metabolism , Stress, Physiological/genetics , Temperature
20.
Materials (Basel) ; 15(14)2022 Jul 13.
Article En | MEDLINE | ID: mdl-35888345

The endolysin EFm1 from the E. faecalis 002 (002) phage IME-EF1 efficiently lyses E. faecalis, a gram-positive bacterium that severely threatens human health. Here, the structure and lytic activity of EFm1 toward E. faecalis were further investigated. Lytic activity shows that EFm1 specifically lyses 002 and 22 other clinically isolated E. faecalis, but not E. faecalis 945. Therefore, EFm1 may be an alternative biomaterial to prevent and treat diseases caused by E. faecalis. A structural analysis showed that EFm1D166Q is a tetramer consisting of one full-length unit with additional C-terminal domains (CTDs), while EFm1166-237 aa is an octamer in an asymmetric unit. Several crucial domains and novel residues affecting the lytic activity of EFm1 were identified, including calcium-binding sites (D20, D22 and D31), a putative classic amidohydrolase catalytic triad (C29, H90 and D108), a tetramerization site (M168 and M227), putative ion channel sites (IGGK, 186-198 aa), and other residues (R208 and Y209). Furthermore, EFm1 exhibited no significant activity when expressed alone in vivo, and IME-EF1 lytic activity decreased when efm1 was knocked down. These findings provide valuable insights into the molecule mechanism of a potential functional biomaterial for the treatment of the disease caused by the opportunistic pathogen E. faecalis.

...