Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Mol Biol Plants ; 26(11): 2173-2187, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33268921

RESUMEN

Self-germinated seedlings of Citrus sinensis and C. grandis were supplied with nutrient solution with 0 mM AlCl3·6H2O (control, -Al) or 1 mM AlCl3·6H2O (+Al) for 18 weeks. The DW (Dry weights) of leaf, stem, shoot and the whole plant of C. grandis were decreased and the ratio of root DW to shoot DW in C. grandis were increased by Al, whereas these parameters of C. sinensis were not changed by Al. Al treatment dramatically decreased the sulfur (S) content in C. grandis roots and the phosphorus (P) content in both C. sinensis and C. grandis roots. More Al was transported to shoots and leaves in C. grandis than in C. sinensis under Al treatment. Al treatment has more adverse effects on C. grandis than on C. sinensis, as revealed by the higher production of superoxide anion (O2 ·-), H2O2 and thiobarbituric acid reactive substace (TBARS) content in C. grandis roots. Via the Illumina sequencing technique, we successfully identified and quantified 12 and 16 differentially expressed miRNAs responding to Al stress in C. sinensis and C. grandis roots, respectively. The possible mechanism underlying different Al tolerance of C. sinensis and C. grandis were summarized as having following aspects: (a) enhancement of adventitious and lateral root development (miR160); (b) up-regulation of stress and signaling transduction related genes, such as SGT1, PLC and AAO (miR477, miR397 and miR398); (c) enhancement of citrate secretion (miR3627); (d) more flexible control of alternative glycolysis pathway and TCA cycle (miR3627 and miR482); (e) up-regulation of S-metabolism (miR172); (f) more flexible control of miRNA metabolism. For the first time, we showed that root development (miR160) and cell wall components (cas-miR5139, csi-miR12105) may play crucial roles in Al tolerance in citrus plants. In conclusion, our study provided a comprehensive profile of differentially expressed miRNAs in response to Al stress between two citrus plants differing in Al tolerance which further enriched our understanding of the molecular mechanism underlying Al tolerance in plants.

2.
PLoS One ; 14(10): e0223516, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31613915

RESUMEN

Citrus grandis seedlings were irrigated with nutrient solutions with four Al-P combinations [two Al levels (0 mM and 1.2 mM AlCl3·6H2O) × two P levels (0 µM and 200 µM KH2PO4)] for 18 weeks. Al dramatically inhibited the growth of C. grandis seedlings, as revealed by a decreased dry weight of roots and shoots. Elevating P level could ameliorate the Al-induced growth inhibition and organic acid (malate and citrate) secretion in C. grandis. Using a comparative proteomic approach revealed by the isobaric tags for relative and absolute quantification (iTRAQ) technique, 318 differentially abundant proteins (DAPs) were successfully identified and quantified in this study. The possible mechanisms underlying P-induced alleviation of Al toxicity in C. grandis were proposed. Furthermore, some DAPs, such as GLN phosphoribosyl pyrophosphate amidotransferase 2, ATP-dependent caseinolytic (Clp) protease/crotonase family protein, methionine-S-oxide reductase B2, ABC transporter I family member 17 and pyridoxal phosphate phosphatase, were reported for the first time to respond to Al stress in Citrus plants. Our study provides some proteomic details about the alleviative effects of P on Al toxicity in C. grandis, however, the exact function of the DAPs identified herein in response to Al tolerance in plants must be further investigated.


Asunto(s)
Aluminio/toxicidad , Citrus/metabolismo , Marcaje Isotópico/métodos , Fósforo/farmacología , Raíces de Plantas/metabolismo , Biomasa , Ácido Cítrico/metabolismo , Citrus/efectos de los fármacos , Citrus/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucosa/metabolismo , Glutatión Peroxidasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Lignina/metabolismo , Malatos/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Raíces de Plantas/efectos de los fármacos , Análisis de Componente Principal , Almidón/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
3.
Int J Mol Sci ; 20(19)2019 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-31569546

RESUMEN

Aluminum (Al) treatment significantly decreased the dry weight (DW) of stem, shoot and whole plant of both Citrus sinensis and C. grandis, but did not change that of root. Al significantly decreased leaf DW of C. grandis, increased the ratio of root to shoot and the lignin content in roots of both species. The higher content of Al in leaves and stems and lignin in roots of C. grandis than that of C. sinensis might be due to the over-expression of Al sensitive 3 (ALS3) and cinnamyl alcohol deaminase (CAD) in roots of C. grandis, respectively. By using yeast-two-hybridazation (Y2H) and bimolecular fluorescence complementation (BiFC) techniques, we obtained the results that glutathione S-transferase (GST), vacuolar-type proton ATPase (V-ATPase), aquaporin PIP2 (PIP2), ubiquitin carboxyl-terminal hydrolase 13 (UCT13), putative dicyanin blue copper protein (DCBC) and uncharacterized protein 2 (UP2) were interacted with ALS3 and GST, V-ATPase, Al sensitive 3 (ALS3), cytochrome P450 (CP450), PIP2, uncharacterized protein 1 (UP1) and UP2 were interacted with CAD. Annotation analysis revealed that these proteins were involved in detoxification, cellular transport, post-transcriptional modification and oxidation-reduction homeostasis or lignin biosynthesis in plants. Real-time quantitative PCR (RT-qPCR) analysis further revealed that the higher gene expression levels of most of these interacting proteins in C. grandis roots than that in C. sinensis ones were consistent with the higher contents of lignin in C. grandis roots and Al absorbed by C. grandis. In conclusion, our study identified some key interacting components of Al responsive proteins ALS3 and CAD, which could further help us to understand the molecular mechanism of Al tolerance in citrus plants and provide new information to the selection and breeding of tolerant cultivars, which are cultivated in acidic areas.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Aluminio/metabolismo , Aminohidrolasas/metabolismo , Citrus/metabolismo , Propanoles/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Aminohidrolasas/genética , Citrus/genética , Regulación Neoplásica de la Expresión Génica , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo
4.
Int J Mol Sci ; 20(13)2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31248059

RESUMEN

Magnesium (Mg) deficiency is one of the major constraining factors that limit the yield and quality of agricultural products. Uniform seedlings of the Citrus sinensis were irrigated with Mg deficient (0 mM MgSO4) and Mg sufficient (1 mM MgSO4) nutrient solutions for 16 weeks. CO2 assimilation, starch, soluble carbohydrates, TBARS content and H2O2 production were measured. Transcriptomic analysis of C. sinensis leaves was performed by Illumina sequencing. Our results showed that Mg deficiency decreased CO2 assimilation, but increased starch, sucrose, TBARS content and H2O2 production in C. sinensis leaves. A total of 4864 genes showed differential expression in response to Mg deficiency revealed by RNA-Seq and the transcriptomic data were further validated by real-time quantitative PCR (RT-qPCR). Gene ontology (GO) enrichment analysis indicated that the mechanisms underlying Mg deficiency tolerance in C. sinensis may be attributed to the following aspects: a) enhanced microtubule-based movement and cell cycle regulation; b) elevated signal transduction in response to biotic and abiotic stimuli; c) alteration of biological processes by tightly controlling phosphorylation especially protein phosphorylation; d) down-regulation of light harvesting and photosynthesis due to the accumulation of carbohydrates; e) up-regulation of cell wall remodeling and antioxidant system. Our results provide a comprehensive insight into the transcriptomic profile of key components involved in the Mg deficiency tolerance in C. sinensis and enrich our understanding of the molecular mechanisms by which plants adapted to a Mg deficient condition.


Asunto(s)
Citrus sinensis/genética , Regulación de la Expresión Génica de las Plantas , Deficiencia de Magnesio/genética , Hojas de la Planta/genética , Transcriptoma , Transporte Biológico , Citrus sinensis/metabolismo , Biología Computacional/métodos , Perfilación de la Expresión Génica , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Magnesio/metabolismo , Deficiencia de Magnesio/metabolismo , Fenotipo , Hojas de la Planta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...