Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Theranostics ; 14(8): 3193-3212, 2024.
Article En | MEDLINE | ID: mdl-38855185

As a developing radiation treatment for tumors, neutron capture therapy (NCT) has less side effects and a higher efficacy than conventional radiation therapy. Drugs with specific isotopes are indispensable counterparts of NCT, as they are the indespensable part of the neutron capture reaction. Since the creation of the first and second generations of boron-containing reagents, NCT has significantly advanced. Notwithstanding, the extant NCT medications, predominantly comprised of small molecule boron medicines, have encountered challenges such monofunctionality, inadequate targeting of tumors, and hypermetabolism. There is an urgent need to promote the research and development of new types of NCT drugs. Bio-nanomaterials can be introduced into the realm of NCT, and nanotechnology can give conventional medications richer functionality and significant adaptability. This can complement the advantages of each other and is expected to develop more new drugs with less toxicity, low side effects, better tumor targeting, and high biocompatibility. In this review, we summarized the research progress of nano-drugs in NCT based on the different types and sources of isotopes used, and introduced the attempts and efforts made by relevant researchers in combining nanomaterials with NCT, hoping to provide pivotal references for promoting the development of the field of tumor radiotherapy.


Neoplasms , Humans , Neoplasms/radiotherapy , Neoplasms/drug therapy , Animals , Neutron Capture Therapy/methods , Nanoparticles/chemistry , Nanostructures/therapeutic use , Nanostructures/chemistry , Nanotechnology/methods , Boron Neutron Capture Therapy/methods , Boron Compounds/therapeutic use , Boron Compounds/chemistry , Boron Compounds/pharmacology
2.
Sci Total Environ ; 935: 173303, 2024 Jul 20.
Article En | MEDLINE | ID: mdl-38761948

Cadmium (Cd) and sulfamethoxazole (SMX) frequently coexist in farmlands, yet their synergistic toxicological impacts on terrestrial invertebrates remain unexplored. In this study, earthworms were exposed to artificial soils percolated with Cd (5 mg/kg), SMX (5 mg/kg) or combination of them for 7 days, followed by a 12-day elimination phase in uncontaminated soil. The uptake of Cd and SMX by the earthworms, along with their subcellular distribution, was meticulously analyzed. Additionally, a suite of biomarkers-including superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and weight loss-were evaluated to assess the health status of the earthworms and the toxicological effects of the Cd and SMX mixture. Notably, the cotreatment with Cd and SMX resulted in a significantly higher weight loss in Eisenia fetida (41.25 %) compared to exposure to Cd alone (26.84 %). Moreover, the cotreatment group exhibited substantially higher concentrations of Cd in the total internal body, fraction C (cytosol), and fraction E (tissue fragments and cell membranes) in Eisenia fetida compared to Cd alone counterparts. The combined exposure also significantly elevated the SMX levels in the total body and fraction C compared with the SMX-only treated earthworms. Additionally, Eisenia fetida subjected to the combined treatment showed markedly increased activities of SOD, CAT, and MDA compared to those treated with Cd alone. The effect addition indices (EAIs), ranging from 1.00 to 2.23, unequivocally demonstrated a synergistic effect of the combined treatments. Interestingly, relocating the earthworms to clean soil did not mitigate the observed adverse effects. These findings underscore the increased risk posed by the Cd-SMX complex to terrestrial invertebrates in agricultural areas.


Biomarkers , Cadmium , Oligochaeta , Soil Pollutants , Sulfamethoxazole , Oligochaeta/drug effects , Oligochaeta/physiology , Animals , Sulfamethoxazole/toxicity , Cadmium/toxicity , Soil Pollutants/toxicity , Biomarkers/metabolism , Malondialdehyde/metabolism , Superoxide Dismutase/metabolism , Catalase/metabolism
3.
Talanta ; 269: 125437, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38070282

A needle-solid-phase microextraction (SPME) method based on hybrid monolithic column (HMC) was proposed for simultaneous separation and extraction of seven amphetamine-type stimulants (ATSs) (amphetamine, methamphetamine, cathinone, methcathinone, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, and 3,4-methylenedioxyethylamphetamine), combining with ultra-performance liquid chromatography-triple quadrupole/linear ion trap mass spectrometer (UPLC-QTRAP MS/MS). Thiol functionalized HMC (T-HMC) showed high extraction efficiency and excellent elution results towards target analytes, among three kinds of single/bi-functionalized HMCs. Various parameters of SPME operation and analytical performance were investigated systematically. The adsorption mechanism of T-HMC to ATSs was also discussed and explained as a mixed mode of electrostatic and hydrophobic interactions. Under the optimum experimental conditions, the proposed T-HMC needle-SPME-UPLC-QTRAP MS/MS method was rapid and convenient with good accuracy, low sample consumption, high sensitivity and strong anti-interference ability. This method was successfully applied to quantitative determination of seven trace ATSs in complex sewage and urine samples. In view of abundant types of HMCs, the needle-SPME based on functional HMC also had the potential to selectively separating and enriching other tract new psychoactive substances in complex matrices, and could provide a reliable tool for drug monitoring, especially in applications for forensic analysis and drug abuse.


Amphetamine , Central Nervous System Stimulants , Sewage , Solid Phase Microextraction , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods
4.
Article En | MEDLINE | ID: mdl-38154657

Microcystins (MCs) are the most widespread, frequently found, and seriously toxic cyanobacterial toxins in aquatic environments. Microcystin-leucine-arginine (MCLR) and microcystin-arginine-arginine (MCRR) are the most studied MCs. Normally, their levels are low and they coexist in the environment; however, they may also interact with each other. The developmental toxicity of MCLR in the presence of MCRR in the early life stage of zebrafish (from 2 to 120 h post fertilization) was investigated for the first time in this study. Our findings revealed that MCRR treatment marginally elevated thyroxine (T4) and 3,5,3'-triiodothyronine (T3) levels, whereas MCLR treatment alone resulted in a significant increase in T3 and T4 levels, indicating a cooperative effect. Furthermore, clear changes in the expression levels of genes involved in growth and development, accompanied by growth inhibition, were observed after co-treatment with MCRR and MCLR. In addition, zebrafish larvae subjected to MCRR and/or MCLR treatment showed increased levels of superoxide dismutase, glutathione, and malondialdehyde, and decreased levels of catalase in the MCRR + MCLR group, indicating oxidative stress and lipid peroxidation. Thus, we investigated the synergistic developmental toxicity of MCRR and MCLR during the early life stages of zebrafish development.


Marine Toxins , Microcystins , Zebrafish , Animals , Zebrafish/metabolism , Microcystins/toxicity , Larva , Arginine/metabolism
5.
Small ; 17(35): e2100683, 2021 Sep.
Article En | MEDLINE | ID: mdl-34310042

Designing highly selective and cost-effective electrocatalysts toward electrochemical carbon dioxide (CO2 ) reduction is crucial for desirable transformation of greenhouse gas into fuels or high-value chemical products. Here, the authors report intermetallic Cu3 Sn that is in situ formed and seamlessly integrated on self-supported bimodal nanoporous Cu skeleton (Cu3 Sn/Cu) via a spontaneous alloying of Sn and Cu as robust electrocatalyst for selective electroreduction of CO2 to CO. By virtue of Sn atoms strengthening CO adsorption on Cu atoms, the intermetallic Cu3 Sn has an intrinsic activity of ≈10.58 µA cm-2 , more than 80-fold higher than that of monometallic Cu. By virtue of hierarchical bicontinuous nanoporous Cu architecture facilitating electron transfer and CO2 and proton mass transport and offering high specific surface areas for full use of electroactive Cu3 Sn sites, the nanoporous Cu3 Sn/Cu hybrid electrodes produce CO at a low overpotential of 0.09 V, and exhibit high partial current density of ≈15 mA cm-2 geo at overpotential of 0.59 V, along with excellent stability and selectivity of 91.5% Faradaic efficiency. The outstanding electrochemical performance make them attractive alternatives to precious Au- and Ag-based electrocatalysts for building low-cost CO2 electrolyzers to selectively produce CO.

6.
Angew Chem Int Ed Engl ; 60(16): 8798-8802, 2021 Apr 12.
Article En | MEDLINE | ID: mdl-33512043

Formic acid (HCOOH) is one of the most promising chemical fuels that can be produced through CO2 electroreduction. However, most of the catalysts for CO2 electroreduction to HCOOH in aqueous solution often suffer from low current density and limited production rate. Herein, we provide a bismuth/cerium oxide (Bi/CeOx ) catalyst, which exhibits not only high current density (149 mA cm-2 ), but also unprecedented production rate (2600 µmol h-1 cm-2 ) with high Faradaic efficiency (FE, 92 %) for HCOOH generation in aqueous media. Furthermore, Bi/CeOx also shows favorable stability over 34 h. We hope this work could offer an attractive and promising strategy to develop efficient catalysts for CO2 electroreduction with superior activity and desirable stability.

7.
Nat Commun ; 11(1): 2940, 2020 Jun 10.
Article En | MEDLINE | ID: mdl-32522988

Developing robust nonprecious electrocatalysts towards hydrogen/oxygen evolution reactions is crucial for widespread use of electrochemical water splitting in hydrogen production. Here, we report that intermetallic Co3Mo spontaneously separated from hierarchical nanoporous copper skeleton shows genuine potential as highly efficient electrocatalysts for alkaline hydrogen/oxygen evolution reactions in virtue of in-situ hydroxylation and electro-oxidation, respectively. The hydroxylated intermetallic Co3Mo has an optimal hydrogen-binding energy to facilitate adsorption/desorption of hydrogen intermediates for hydrogen molecules. Associated with high electron/ion transport of bicontinuous nanoporous skeleton, nanoporous copper supported Co3Mo electrodes exhibit impressive hydrogen evolution reaction catalysis, with negligible onset overpotential and low Tafel slope (~40 mV dec-1) in 1 M KOH, realizing current density of -400 mA cm-2 at overpotential of as low as 96 mV. When coupled to its electro-oxidized derivative that mediates efficiently oxygen evolution reaction, their alkaline electrolyzer operates with a superior overall water-splitting output, outperforming the one assembled with noble-metal-based catalysts.

8.
Research (Wash D C) ; 2020: 2987234, 2020.
Article En | MEDLINE | ID: mdl-32161925

Designing highly active and robust platinum-free electrocatalysts for hydrogen evolution reaction is vital for large-scale and efficient production of hydrogen through electrochemical water splitting. Here, we report nonprecious intermetallic Cu5Zr clusters that are in situ anchored on hierarchical nanoporous copper (NP Cu/Cu5Zr) for efficient hydrogen evolution in alkaline medium. By virtue of hydroxygenated zirconium atoms activating their nearby Cu-Cu bridge sites with appropriate hydrogen-binding energy, the Cu5Zr clusters have a high electrocatalytic activity toward the hydrogen evolution reaction. Associated with unique architecture featured with steady and bicontinuous nanoporous copper skeleton that facilitates electron transfer and electrolyte accessibility, the self-supported monolithic NP Cu/Cu5Zr electrodes boost violent hydrogen gas release, realizing ultrahigh current density of 500 mA cm-2 at a low potential of -280 mV versus reversible hydrogen electrode, with exceptional stability in 1 M KOH solution. The electrochemical properties outperform those of state-of-the-art nonprecious metal electrocatalysts and make them promising candidates as electrodes in water splitting devices.

9.
Nat Commun ; 10(1): 4292, 2019 09 20.
Article En | MEDLINE | ID: mdl-31541111

Aqueous rechargeable microbatteries are promising on-chip micropower sources for a wide variety of miniaturized electronics. However, their development is plagued by state-of-the-art electrode materials due to low capacity and poor rate capability. Here we show that layered potassium vanadium oxides, KxV2O5·nH2O, have an amorphous/crystalline dual-phase nanostructure to show genuine potential as high-performance anode materials of aqueous rechargeable potassium-ion microbatteries. The dual-phase nanostructured KxV2O5·nH2O keeps large interlayer spacing while removing secondary-bound interlayer water to create sufficient channels and accommodation sites for hydrated potassium cations. This unique nanostructure facilitates accessibility/transport of guest hydrated potassium cations to significantly improve practical capacity and rate performance of the constituent KxV2O5·nH2O. The potassium-ion microbatteries with KxV2O5·nH2O anode and KxMnO2·nH2O cathode constructed on interdigital-patterned nanoporous metal current microcollectors exhibit ultrahigh energy density of 103 mWh cm-3 at electrical power comparable to carbon-based microsupercapacitors.

10.
Angew Chem Int Ed Engl ; 58(28): 9464-9469, 2019 Jul 08.
Article En | MEDLINE | ID: mdl-31090132

The electrochemical N2 fixation, which is far from practical application in aqueous solution under ambient conditions, is extremely challenging and requires a rational design of electrocatalytic centers. We observed that bismuth (Bi) might be a promising candidate for this task because of its weak binding with H adatoms, which increases the selectivity and production rate. Furthermore, we successfully synthesized defect-rich Bi nanoplates as an efficient noble-metal-free N2 reduction electrocatalyst via a low-temperature plasma bombardment approach. When exclusively using 1 H NMR measurements with N2 gas as a quantitative testing method, the defect-rich Bi(110) nanoplates achieved a 15 NH3 production rate of 5.453 µg mgBi -1 h-1 and a Faradaic efficiency of 11.68 % at -0.6 V vs. RHE in aqueous solution at ambient conditions.

11.
Adv Mater ; 31(15): e1806781, 2019 Apr.
Article En | MEDLINE | ID: mdl-30803061

Efficient and selective dehydrogenation of formic acid is a key challenge for a fuel-cell-based hydrogen economy. Though the development of heterogeneous catalysts has received much progress, their catalytic activity remains insufficient. Moreover, the design principle of such catalysts are still unclear. Here, experimental and theoretical studies on a series of mono-/bi-metallic nanoparticles supported on a NH2 -N-rGO substrate are combined for formic acid dehydrogenation where the surface energy of a metal is taken as a relevant indicator for the adsorption ability of the catalyst for guiding catalyst design. The AuPd/NH2 -N-rGO catalyst shows record catalytic activity by reducing the energy barrier of rate controlling steps of formate adsorption and hydrogen desorption. The obtained excellent results both in experiments and simulations could be extended to other important systems, providing a general guideline to design more efficient catalysts.

...