Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 42
1.
Analyst ; 149(9): 2498-2506, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38629127

Impact electrochemistry allows for the investigation of the properties of single entities, ranging from nanoparticles (NPs) to soft bio-particles. It has introduced a novel dimension in the field of biological analysis, enhancing researchers' ability to comprehend biological heterogeneity and offering a new avenue for developing novel diagnostic devices for quantifying biological analytes. This review aims to summarize the recent advancements in impact electrochemistry-based biosensing over the past two to three years and provide insights into the future directions of this field.


Biosensing Techniques , Electrochemical Techniques , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Humans , Nanoparticles/chemistry
2.
ACS Sens ; 9(2): 759-769, 2024 02 23.
Article En | MEDLINE | ID: mdl-38306386

Advanced techniques for both environmental and biological prescription drug monitoring are of ongoing interest. In this work, a fluorescent sensor based on an Eu3+-doped anionic zinc-based metal-organic framework (Eu3+@Zn-MOF) was constructed for rapid visual analysis of the prescription drug molecule demecycline (DEM), achieving both high sensitivity and selectivity. The ligand 2-amino-[1,1'-biphenyl]-4,4'-dicarboxylic acid (bpdc-NH2) not only provides stable cyan fluorescence (467 nm) for the framework through intramolecular charge transfer of bpdc-NH2 infinitesimal disturbanced by Zn2+ but also chelates Eu3+, resulting in red (617 nm) fluorescence. Through the synergy of photoinduced electron transfer and the antenna effect, a bidirectional response to DEM is achieved, enabling concentration quantification. The Eu3+@Zn-MOF platform exhibits a wide linear range (0.25-2.5 µM) to DEM and a detection limit (LOD) of 10.9 nM. Further, we integrated the DEM sensing platform into a paper-based system and utilized a smartphone for the visual detection of DEM in water samples and milk products, demonstrating the potential for large-scale, low-cost utilization of the technology.


Prescription Drugs , Zinc , Fluorescence , Biological Monitoring , Prescriptions
3.
ACS Nano ; 18(2): 1531-1542, 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38164912

Nanomedicine is promising for disease prevention and treatment, but there are still many challenges that hinder its rapid development. A major challenge is to efficiently seek candidates with the desired therapeutic functions from tremendously available materials. Here, we report an integrated computational and experimental framework to seek alloy nanoparticles from the Materials Project library for antibacterial applications, aiming to learn the inverse screening concept from traditional medicine for nanomedicine. Because strong peroxidase-like catalytic activity and weak toxicity to normal cells are the desired material properties for antibacterial usage, computational screening implementing theoretical prediction models of catalytic activity and cytotoxicity is first conducted to select the candidates. Then, experimental screening based on scanning probe block copolymer lithography is used to verify and refine the computational screening results. Finally, the best candidate AuCu3 is synthesized in solution and its antibacterial performance over other nanoparticles against S. aureus and E. coli. is experimentally confirmed. The results show the power of inverse screening in accelerating the research and development of antibacterial nanomedicine, which may inspire similar strategies for other nanomedicines in the future.


Nanomedicine , Nanoparticles , Nanomedicine/methods , Escherichia coli , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology
4.
ACS Sens ; 9(1): 110-117, 2024 01 26.
Article En | MEDLINE | ID: mdl-38113272

Protein kinase activity correlates closely with that of many human diseases. However, the existing methods for quantifying protein kinase activity often suffer from limitations such as low sensitivity, harmful radioactive labels, high cost, and sophisticated detection procedures, underscoring the urgent need for sensitive and rapid detection methods. Herein, we present a simple and sensitive approach for the homogeneous detection of protein kinase activity based on nanoimpact electrochemistry to probe the degree of aggregation of silver nanoparticles (AgNPs) before and after phosphorylation. Phosphorylation, catalyzed by protein kinases, introduces two negative charges into the substrate peptide, leading to alterations in electrostatic interactions between the phosphorylated peptide and the negatively charged AgNPs, which, in turn, affects the aggregation status of AgNPs. Via direct electro-oxidation of AgNPs in nanoimpact electrochemistry experiments, protein kinase activity can be quantified by assessing the impact frequency. The present sensor demonstrates a broad detection range and a low detection limit for protein kinase A (PKA), along with remarkable selectivity. Additionally, it enables monitoring of PKA-catalyzed phosphorylation processes. In contrast to conventional electrochemical sensing methods, this approach avoids the requirement of complex labeling and washing procedures.


Metal Nanoparticles , Humans , Phosphorylation , Silver , Electrochemistry/methods , Peptides , Protein Kinases
5.
Small ; : e2307293, 2023 Dec 04.
Article En | MEDLINE | ID: mdl-38047540

Molybdenum disulfide (MoS2 ) has gained significant attention as a promising catalyst for hydrogen evolution reaction (HER). The catalytic performance of MoS2 can be enhanced by either altering its structure or regulating external conditions. In this study, a novel approach combining the introduction of sulfur vacancy (VS ) and biaxial tensile strain to create more active sites and modulate the band structure of monolayer MoS2 is proposed. To achieve the desired strain level, nano-cones (NCs) array substrates facilely fabricated by dip-pen nanolithography (DPN) are employed. The magnitude of the applied tensile strain can be finely tuned via adjusting the height of the NCs. Furthermore, on-chip electrochemical devices are constructed based on artificial structures, enabling precise optimization of HER performance of MoS2 through the synergistic effect of VS and strain. Combined with the d-band theory, it reveals that the HER properties of VS -MoS2 are highly dependent on the degree of tensile strain. This study presents a promising avenue for the design and preparation of high-performance 2D catalysts for energy conversion and storage applications.

6.
Nano Lett ; 23(23): 10871-10878, 2023 Dec 13.
Article En | MEDLINE | ID: mdl-37955520

Plasmon-enhanced electrochemistry (PEEC) has been observed to facilitate energy conversion systems by converting light energy to chemical energy. However, comprehensively understanding the PEEC mechanism remains challenging due to the predominant use of ensemble-based methodologies on macroscopic electrodes, which fails to measure electron-transfer kinetics due to constraints from mass transport and the averaging effect. In this study, we have employed nanoparticle impact electrochemistry (NIE), a newly developed electroanalytical technique capable of measuring electrochemical dynamics at a single-nanoparticle level under optimal mass transport conditions, along with microscopic electron-transfer theory for data interpretation. By investigating the plasmon enhanced hydrogen evolution reaction (HER) at individual silver nanoparticles (AgNPs), we have clearly revealed the previously unknown influence of solvent effects within the PEEC mechanism. This finding suggests an additional approach to optimize plasmon-assisted electrocatalysis and electrosynthesis systems.

7.
Anal Chim Acta ; 1276: 341638, 2023 Oct 02.
Article En | MEDLINE | ID: mdl-37573116

Nanoparticle impact electrochemistry (NIE) is an emerging electroanalytical technique that has been utilized to the sensitive detection of a wide range of biological species. So far, the NIE based trace ion detection is largely unexplored due to the lack of effective signal amplification strategies. We herein develop an NIE-based electrochemical sensing platform that utilizes T-Hg2+-T coordination induced AgNP aggregation to detect Hg2+ in aqueous solution. The proposed aggregation-collision strategy enables highly sensitive and selective detection. A dual-mode analysis based on the change in impact frequency and oxidative charge of the anodic oxidation of the AgNPs in NIE allows for more accurate self-validated quantification. Furthermore, the current NIE-based sensor demonstrates reliable analysis of Hg2+ of real water samples, showing great potential for practical environmental monitoring and point-of-care testing (POCT) applications.

8.
Angew Chem Int Ed Engl ; 62(41): e202306185, 2023 Oct 09.
Article En | MEDLINE | ID: mdl-37507837

Prussian blue (PB) has emerged as a promising cathode material in aqueous batteries. It possesses two distinct redox centers, and the potassium ions (K+ ) are unevenly distributed throughout the compound, adding complexity to the interpretation of the K+ insertion/de-insertion kinetic mechanism. Traditional ensemble-averaged measurements are limited in uncovering the precise kinetic information of the PB particles, as the results are influenced by the construction of the porous composite electrode and the redox behavior from different particles. In this study, the electrochemical processes of individual PB particles were investigated using nano-impact electrochemistry. By varying the potentials, different types of transient current signals were obtained that revealed the kinetic mechanism of each oxidation/reduction reaction in combination with theoretical simulation. Additionally, a partially contradictory conclusion between single-particle analysis and the ensemble-averaged measurement was discussed. These findings contribute to a better understanding of the electrochemical processes of cathode materials with multiple redox centers, which facilitates the development of effective strategies to optimize these materials.

9.
Biosens Bioelectron ; 228: 115203, 2023 May 15.
Article En | MEDLINE | ID: mdl-36934608

In this work, we report a versatile and tunable platform for the construction of various cell array biochips using a simple soft lithographic approach to pattern polydopamine (PDA) arrays via microcontact printing (µCP). Instead of direct polymerization of PDA on the polydimethylsiloxane (PDMS) tips, dopamine monomers were first printed on the substrate followed by a self-oxidative polymerization step facilitated by ammonia vapor to grow PDA in situ, which greatly reduced the reaction time and prevented the PDMS tips from damaging. The improved robustness and utility of the PDMS tips allows the formation of tunable PDA array chips with controllable PDA feature size and shape. As a result, single cell, multi-cells and cell line arrays can be constructed. The obtained cell array chips showed high single cell capture efficiency, providing a standardized single cell array analysis platform. Meanwhile, the adhered cells can maintain excellent viability and proliferation ability on the PDA chips. Moreover, a cytotoxicity sensor with single cell resolution was enabled on the single cell array chip. This work provides a promising cell array biochip platform for high-throughput cellular analysis and cell screening.


Biosensing Techniques , Cell Line , Oxidation-Reduction , Tissue Array Analysis , Dimethylpolysiloxanes
10.
Anal Chem ; 95(5): 3045-3053, 2023 02 07.
Article En | MEDLINE | ID: mdl-36692355

Homogeneous immunoassays represent an attractive alternative to traditional heterogeneous assays due to their simplicity and high efficiency. Homogeneous electrochemical assays, however, are not commonly accessed due to the requirement of electrode immobilization of the recognition elements. Herein, we demonstrate a new homogeneous electrochemical immunoassay based on the aggregation-collision strategy for the quantification of tumor protein biomarker alpha-fetoprotein (AFP). The detection principle relies on the aggregation of AgNPs induced by the molecular biorecognition between AFP and AgNPs-anti-AFP probes, which leads to an increased AgNP size and decreased AgNP concentration, allowing an accurate self-validated dual-mode immunoassay by performing nanoimpact electrochemistry (NIE) of the oxidation of AgNPs. The intrinsic one-by-one analytical capability of NIE as well as the participation of all of the atoms of the AgNPs in signal transduction greatly elevates the detection sensitivity. Accordingly, the current sensor enables a limit of detection (LOD) of 5 pg/mL for AFP analysis with high specificity and efficiency. More importantly, reliable detection of AFP in diluted human sera of hepatocellular carcinoma (HCC) patients is successfully achieved, indicating that the NIE-based homogeneous immunoassay shows great potential in HCC liquid biopsy.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , alpha-Fetoproteins/analysis , Carcinoma, Hepatocellular/diagnosis , Liver Neoplasms/diagnosis , Biomarkers, Tumor/analysis , Immunoassay , Electrochemical Techniques
11.
Food Chem ; 406: 135004, 2023 Apr 16.
Article En | MEDLINE | ID: mdl-36481514

The health benefits of quercetin are limited by its low bioaccessibility. This could be improved by developing plant-based protein delivery systems. Encapsulating quercetin using untreated and high-intensity ultrasound treated (20 kHz at 139 W for 10, 15 and 20 min) soy protein isolate (SPI) produced composite nanoparticles at around 127-136 nm. Ultrasound treatments on SPI caused structural changes of proteins (e.g. around 6-fold increase of surface hydrophobicity and protein solubility) favorable to encapsulation. The encapsulation efficiency for quercetin complexed with 15 min ultrasound treated SPI (76.5 %) was around 10-fold of that with the native SPI (7.2 %). Quercetin was significantly more in vitro bioaccessible when complexed with the treated SPI (61.1 %-64.5 %), as compared to the free quercetin (10.5 %-13.0 %). Ultrasound treated SPI seems to be a promising nanocarrier to encapsulate hydrophobic bioactive ingredients with higher solubility, stability, and bioaccessibility.


Nanoparticles , Quercetin , Quercetin/chemistry , Soybean Proteins/chemistry , Nanoparticles/chemistry , Solubility , Hydrophobic and Hydrophilic Interactions
12.
PLoS One ; 17(12): e0278270, 2022.
Article En | MEDLINE | ID: mdl-36454866

BACKGROUND: Axillary lymph node metastasis (ALNM) is one of the most important prognostic factors for breast cancer patients, and DNA methylation is involved in ALNM of breast cancer. However, the methylation profile of breast cancer ALNM remains unknown. METHODS: Breast cancer tissues were collected from patients with and without ALNM. We investigated the genome-wide DNA methylation profile in breast cancer with and without ALNM using reduced representation bisulfite sequencing (RRBS). Then, differentially methylated regions (DMRs) were verified by targeted bisulfite sequencing. RESULTS: A total of 21491 DMRs were identified between the lymph node positive group and negative group. Compared to the LN-negative breast cancer, LN-positive breast cancer had 10,920 hypermethylated DMRs and 10,571 hypomethylated DMRs. Then, 10 DMRs in the gene promoter region were detected by targeted bisulfite sequencing, these gene included HOXA5, PTOV1-AS1, RHOF, PAX6, GSTP1, RASGRF2, AKR1B1, BNIP3, CRMP1, ING5. Compared with negative lymph node, the promoter methylation levels of RASGRF2, AKR1B1 and CRMP1 increased in positive lymph node, while the promoter methylation level of RHOF decreased in positive lymph node. In addition, Cancer Genome Atlas (TCGA) data showed that RASGRF2, AKR1B1 and CRMP1 were low expressed in breast Cancer tissues, while RHOF was high expressed in breast Cancer tissues. Furthermore, in addition to highly methylated AKR1B1, RASGRF2 and CRMP1 gene promoters, BNIP3, GSTP1, HOXA5 and PAX6 gene promoters were also methylated in ER-positive and HER2-negative breast cancer with ALNM. CONCLUSIONS: When compared to negative lymph node breast cancer, the positive lymph node breast cancer has a differential methylation status. Promoter methylation of RASGRF2, AKR1B1, CRMP1 and RHOF in lymph node positive breast cancer tissues was significantly different from that in lymph node negative breast cancer tissues. AKR1B1, RASGRF2, CRMP1, BNIP3, GSTP1, HOXA5 and PAX6 genes were methylated in ER-positive and HER2-negative breast cancer with ALNM. The study provides an important biological base for understanding breast cancer with ALNM and developing therapeutic targets for breast cancer with ALNM.


Breast Neoplasms , Female , Humans , Breast Neoplasms/genetics , DNA Methylation/genetics , Lymph Nodes , Lymphatic Metastasis/genetics
13.
ACS Sens ; 7(10): 3216-3222, 2022 10 28.
Article En | MEDLINE | ID: mdl-36240195

Tumor protein quantification with high specificity, sensitivity, and efficiency is of great significance to enable early diagnosis and effective treatment. The existing methods for protein analysis usually suffer from high cost, time-consuming operation, and insufficient sensitivity, making them not clinically friendly. In this work, a label-free homogeneous sensor based on the nano-impact electroanalytic (NIE) technique was proposed for the detection of tumor protein marker alpha-fetoprotein (AFP). The detection principle is based on the recovery of current of single PtNP catalyzed hydrazine oxidation due to the release of the pre-adsorbed passivating aptamers on PtNPs from the competition of the stronger binding between the specific interaction of the AFP aptamer and AFP. The intrinsic one-by-one analytical ability of NIE allows highly sensitive detection, which can be further improved by reducing the reaction/incubation volume. Meanwhile, the current sensor avoids a laborious labeling procedure as well as the separation and washing steps due to the in situ characteristic of NIE. Accordingly, the current sensor enables efficient, highly sensitive, and specific AFP analysis. More importantly, the reliable detection of AFP in diluted real sera from hepatocellular carcinoma (HCC) patients is successfully achieved, indicating that the impact electrochemistry-based sensing platform has great potential to be applied in point-of-care devices for HCC liquid biopsy.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , alpha-Fetoproteins/analysis , Carcinoma, Hepatocellular/diagnosis , Electrochemistry , Liver Neoplasms/diagnosis , Sensitivity and Specificity , Biomarkers, Tumor , Neoplasm Proteins
14.
Angew Chem Int Ed Engl ; 61(37): e202207270, 2022 Sep 12.
Article En | MEDLINE | ID: mdl-35819405

Selective electrochemical production of valued chemicals is of significant importance but remains a great challenge in chemistry. Conventional approaches for enhancing reaction selectivity focus on the improvement of the catalysts themselves. In this work, we systematically studied the reaction kinetics and mass transport behavior of LaNiO3 nanocubes (LaNiO3 NCs) catalyzed hydrogen peroxide reduction reaction (HPRR) at ensemble and single nanoparticle levels using nano-impact electrochemistry (NIE). We find that the selectivity of HPRR was altered at individual random-walk nanoparticles as compared to their ensemble counterpart without changing the reaction kinetics, due to the significantly enhanced mass transport at single nanoparticles. This discovery offers the scope of new catalytic approaches for engineering electrochemical reactions in general.

15.
Chemistry ; 28(53): e202201489, 2022 Sep 22.
Article En | MEDLINE | ID: mdl-35770856

Plasmon enhanced electrochemistry (PEEC), where specific electrochemical reactions are promoted due to the reduced energy barrier of the reaction processes by the light excited "hot carriers" of the plasmonic nanoparticles, has aroused tremendous interest in recent years. A deep understanding of the PEEC process becomes a key issue for facilitating PEEC catalyst design and improving PEEC performance. This concept article begins with a brief discussion of the macroscopic electrochemical method of PEEC study of the plasmonic nanoparticle ensembles. Following that, we highlight two electrochemical techniques that may possess single nanoparticle sensitivity, i. e., scanning electrochemical microscope and nano-impact electrochemistry. The pros and cons of each technique are discussed and an outlook is given. We hope to provide the readers with the current status of PEEC to evoke reflections regarding the reaction mechanisms, performance improvement, and the utilizations to important systems.


Metal Nanoparticles , Catalysis , Electrochemical Techniques/methods , Electrochemistry/methods
16.
Angew Chem Int Ed Engl ; 61(8): e202115819, 2022 Feb 14.
Article En | MEDLINE | ID: mdl-34890086

The structure-function relationship of plasmon-enhanced electrochemistry (PEEC) is of great importance for the design of efficient PEEC catalysts, but is rarely investigated at single nanoparticle level for the lack of an efficient nanoscale methodology. Herein, we report the utilization of nanoparticle impact electrochemistry to allow single nanoparticle PEEC, where the effect of incident light on the plasmonic Ag/Au nanoparticles for accelerating cobalt metal-organic framework nanosheets (Co-MOFNs) catalyzed hydrogen evolution reaction (HER) is systematically explored. It is found that the plasmon-excited hot carrier injection can lower the reaction activation energy, resulting in a much promoted reaction probability and the integral charge generated from individual collisions. Besides, a plasmonic nanoparticle filtering method is established to effectively distinguish different plasmonic nanoparticles. This work provides a unique view in understanding the intrinsic physicochemical properties for PEEC at the nano-confined domains.

17.
Nano Lett ; 21(21): 9354-9360, 2021 Nov 10.
Article En | MEDLINE | ID: mdl-34719926

The classical size effect of Pt particles on oxygen reduction reaction (ORR) suggests that the activity and durability would decrease with reducing the particle size, self-limiting the effectiveness in maximizing the Pt utilization efficiency with the particle-size-reduction strategy. Herein, we discover an anomalous size effect based on Pt nanowires (NWs) with tunable diameters, where the monotonically increasing activity and durability for ORR were observed with decreasing the diameter from 2.4 to 1.1 nm. Our results reveal that the dominant role of increased compressive strain induced by decreasing the diameter of NWs in weakening the adsorption and suppressing the Pt dissolution accounts for this anomalous size effect, where the reduced low-coordinated sites on NWs, the intrinsic structural advantage, is the root. Our findings not only expand the knowledge to the classical size effect but also provide new implications to break through the size limit in the design of Pt-based ORR catalysts.

18.
Front Chem ; 9: 718000, 2021.
Article En | MEDLINE | ID: mdl-34381763

In recent years, nano-impact electrochemistry (NIE) has attracted widespread attention as a new electroanalytical approach for the analysis and characterization of single nanoparticles in solution. The accurate analysis of the large volume of the experimental data is of great significance in improving the reliability of this method. Unfortunately, the commonly used data analysis approaches, mainly based on manual processing, are often time-consuming and subjective. Herein, we propose a spike detection algorithm for automatically processing the data from the direct oxidation of sliver nanoparticles (AgNPs) in NIE experiments, including baseline extraction, spike identification and spike area integration. The resulting size distribution of AgNPs is found to agree very well with that from transmission electron microscopy (TEM), showing that the current algorithm is promising for automated analysis of NIE data with high efficiency and accuracy.

19.
Food Res Int ; 145: 110424, 2021 07.
Article En | MEDLINE | ID: mdl-34112426

Microbial, physicochemical, rheological, and microstructural changes of surimi prepared by pH shift methods and the traditional water-washing method during cold storage were investigated. The starting aerobic mesophilic count (AMC) of pH shift surimi was around 1 log CFU/g lower than water-washed surimi, suggesting antimicrobial effects of the pH shift. All samples could be stored for 5 to 6 days based on the AMC results. Throughout the storage, the gel strength of alkaline-treated surimi increased from 204.2 to 491.9 g, while water-washed surimi decreased from 462.1 to 172.9 g. After the storage, alkaline-treated surimi showed lower total volatile basic nitrogen (TVB-N) value and smaller network hole size that was suitable for incorporation of moisture and starch. It also remained its rheological properties comparing with acid-treated surimi, with better odour properties, less protein degradation, and better network formation. The results indicate that alkaline-treated surimi is more suitable for cold storage.


Tilapia , Animals , Gels , Hydrogen-Ion Concentration , Rheology , Starch
20.
ACS Sens ; 6(6): 2320-2329, 2021 06 25.
Article En | MEDLINE | ID: mdl-34033456

Protein quantification with high throughput and high sensitivity is essential in the early diagnosis and elucidation of molecular mechanisms for many diseases. Conventional approaches for protein assay often suffer from high costs, long analysis time, and insufficient sensitivity. The recently emerged nanoimpact electrochemistry (NIE), as a contrast, allows in situ detection of analytes one at a time with simplicity, fast response, high throughput, and the potential of reducing the detection limits down to the single entity level. Herein, we propose a NIE-enabled electrochemical immunoassay using silver nanoparticles (AgNPs) as labels for the detection of CYFRA21-1, a typical protein marker for lung carcinoma. This strategy is based on the measurement of the impact frequency and the charge intensity of the electrochemical oxidation of individual AgNPs before and after they are modified with anti-CYFRA21-1 and in turn immunocomplexed with CYFRA21-1. Both the frequency and intensity modes of single-nanoparticle electrochemistry correlate well with each other, resulting in a self-validated immunoassay that provides linear ranges of two orders of magnitude and a limit of detection of 0.1 ng/mL for CYFRA21-1 analysis. The proposed immunoassay also exhibits excellent specificity when challenged with other possible interfering proteins. In addition, the CYFRA21-1 content is validated by a conventional, well-known enzyme-linked immunosorbent assay and successfully quantified in a diluted healthy serum with a satisfactory recovery. Moreover, CYFRA21-1 detection in serum samples of lung cancer patients is successfully demonstrated, suggesting the feasibility of the NIE-based immunoassay in clinically relevant diagnosis. To the best of our knowledge, this is the first report to construct NIE-based electrochemical immunoassays for the specific detection of tumor protein biomarkers.


Lung Neoplasms , Metal Nanoparticles , Antigens, Neoplasm , Biomarkers, Tumor , Electrochemistry , Humans , Keratin-19 , Lung , Lung Neoplasms/diagnosis , Silver
...