Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.089
1.
Article En | MEDLINE | ID: mdl-38733385

Flexible electronics have gained significant attention as an innovative solution to meet the growing need for information collection from the human body and the environment. However, a critical challenge lies in the need for a transfer printing technique that can fabricate rigid and brittle devices on flexible organic substrates. Here, we develop a multiscale transfer printing technique using an ultraviolet-curable shape memory polymer (SMP) that serves as both the stamp and the receiver substrate. The SMP demonstrates exceptional mechanical performance with toughness at room temperature and remarkable flexibility near its glass transition temperature. The SMP material exhibits an impressive shape recovery ratio and remarkable adhesion switchability. We demonstrate robust transfer printing of diverse objects with different materials and morphologies and in situ transfer of multiscale metallic structures. In addition, the in situ fabricated transparent hyperthermia patches with embedded metal grids are demonstrated, offering potential application in the field of sensors, wearable devices, and electronic skin.

2.
J Neurochem ; 2024 May 01.
Article En | MEDLINE | ID: mdl-38690718

Positron emission tomography (PET) imaging studies in laboratory animals are almost always performed under isoflurane anesthesia to ensure that the subject stays still during the image acquisition. Isoflurane is effective, safe, and easy to use, and it is generally assumed to not have an impact on the imaging results. Motivated by marked differences observed in the brain uptake and metabolism of the PET tracer 3-[18F]fluoro-4-aminopyridine [(18F]3F4AP) between human and nonhuman primate studies, this study investigates the possible effect of isoflurane on this process. Mice received [18F]3F4AP injection while awake or under anesthesia and the tracer brain uptake and metabolism was compared between groups. A separate group of mice received the known cytochrome P450 2E1 inhibitor disulfiram prior to tracer administration. Isoflurane was found to largely abolish tracer metabolism in mice (74.8 ± 1.6 vs. 17.7 ± 1.7% plasma parent fraction, % PF) resulting in a 4.0-fold higher brain uptake in anesthetized mice at 35 min post-radiotracer administration. Similar to anesthetized mice, animals that received disulfiram showed reduced metabolism (50.0 ± 6.9% PF) and a 2.2-fold higher brain signal than control mice. The higher brain uptake and lower metabolism of [18F]3F4AP observed in anesthetized mice compared to awake mice are attributed to isoflurane's interference in the CYP2E1-mediated breakdown of the tracer, which was confirmed by reproducing the effect upon treatment with the known CYP2E1 inhibitor disulfiram. These findings underscore the critical need to examine the effect of isoflurane in PET imaging studies before translating tracers to humans that will be scanned without anesthesia.

3.
Biotechnol Adv ; 73: 108374, 2024 May 08.
Article En | MEDLINE | ID: mdl-38729229

Indigo is a natural dye extensively used in the global textile industry. However, the conventional synthesis of indigo using toxic compounds like aniline, formaldehyde, and hydrogen cyanide has led to environmental pollution and health risks for workers. This method also faces growing economic, sustainability, and environmental challenges. To address these issues, the concept of bio-indigo or indigo biosynthesis has been proposed as an alternative to aniline-based indigo synthesis. Among various enzymes, Flavin-containing Monooxygenases (FMOs) have shown promise in achieving a high yield of bio-indigo. However, the industrialization of indigo biosynthesis still encounters several challenges. This review focuses on the historical development of indigo biosynthesis mediated by FMOs. It highlights several factors that have hindered industrialization, including the use of unsuitable chassis (Escherichia coli), the toxicity of indole, the high cost of the substrate L-tryptophan, the water-insolubility of the product indigo, the requirement of reducing reagents such as sodium dithionite, and the relatively low yield and high cost compared to chemical synthesis. Additionally, this paper summarizes various strategies to enhance the yield of indigo synthesized by FMOs, including redundant sequence deletion, semi-rational design, cheap precursor research, NADPH regeneration, large-scale fermentation, and enhancement of water solubility of indigo.

4.
Int J Biol Macromol ; 269(Pt 2): 132215, 2024 May 09.
Article En | MEDLINE | ID: mdl-38729482

Food allergy has a significant impact on the health and well-being of individuals, affecting both their physical and mental states. Research on natural bioactive compounds, such as polysaccharides extracted from seaweeds, holds great promise in the treatment of food allergies. In this study, fermented Gracilaria lemaneiformis polysaccharides (F-GLSP) were prepared using probiotic fermentation. Probiotic fermentation of Gracilaria lemaneiformis reduces the particle size of polysaccharides. To compare the anti-allergic activity of F-GLSP with unfermented Gracilaria lemaneiformis polysaccharides (UF-GLSP), an OVA-induced mouse food allergy model was established. F-GLSP exhibited a significant reduction in OVA-specific IgE and mMCP levels in allergic mice. Moreover, it significantly inhibited Th2 differentiation and IL-4 production and significantly promoted Treg differentiation and IL-10 production in allergic mice. In contrast, UF-GLSP only reduced OVA-specific IgE and mMCP in the serum of allergic mice. Furthermore, F-GLSP demonstrated a more pronounced regulation of intestinal flora abundance compared to UF-GLSP, significantly influencing the populations of Firmicutes, Bacteroidetes, Lactobacillus, and Clostridiales in the intestines of mice with food allergy. These findings suggest that F-GLSP may regulate food allergies in mice through multiple pathways. In summary, this study has promoted further development of functional foods with anti-allergic properties based on red algae polysaccharides.

5.
Int Immunopharmacol ; 134: 112076, 2024 May 10.
Article En | MEDLINE | ID: mdl-38733818

BACKGROUND: The research on the S100 family has garnered significant attention; however, there remains a dearth of understanding regarding the precise role of S100A16 in the tumor microenvironment of liver cancer. METHOD: Comprehensive analysis was conducted on the expression of S100A16 in tumor tissues and its correlation with hypoxia genes. Furthermore, an investigation was carried out to examine the association between S100A16 and infiltration of immune cells in tumors as well as immunotherapy. Relevant findings were derived from the analysis of single cell sequencing data, focusing on the involvement of S100A16 in both cellular differentiation and intercellular communication. Finally, we validated the expression of S100A16 in liver cancer by Wuhan cohort and multiplexed immunofluorescence to investigate the correlation between S100A16 and hypoxia. RESULT: Tumor tissues displayed a notable increase in the expression of S100A16. A significant correlation was observed between S100A16 and genes associated with hypoxic genes. Examination of immune cell infiltration revealed an inverse association between T cell infiltration and the level of S100A16 expression. The high expression group of S100A16 exhibited a decrease in the expression of genes related to immune cell function. Single-cell sequencing data analysis revealed that non-immune cells predominantly expressed S100A16, and its expression levels increased along with the trajectory of cell differentiation. Additionally, there were significant variations observed in hypoxia genes as cells underwent differentiation. Cellular communication identified non-immune cells interacting with immune cells through multiple signaling pathways. The Wuhan cohort verified that S100A16 expression was increased in liver cancer. The expression of S100A16 and HIF was simultaneously elevated in endothelial cells. CONCLUSION: The strong association between S100A16 and immune cell infiltration is observed in the context of hypoxia, indicating its regulatory role in shaping the hypoxic tumor microenvironment in liver cancer.

6.
Int Immunopharmacol ; 134: 112173, 2024 May 09.
Article En | MEDLINE | ID: mdl-38728884

Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is characterized by a high incidence and mortality rate, highlighting the need for biomarkers to detect ILD early in RA patients. Previous studies have shown the protective effects of Interleukin-22 (IL-22) in pulmonary fibrosis using mouse models. This study aims to assess IL-22 expression in RA-ILD to validate foundational experiments and explore its diagnostic value. The study included 66 newly diagnosed RA patients (33 with ILD, 33 without ILD) and 14 healthy controls (HC). ELISA was utilized to measure IL-22 levels and perform intergroup comparisons. The correlation between IL-22 levels and the severity of RA-ILD was examined. Logistic regression analysis was employed to screen potential predictive factors for RA-ILD risk and establish a predictive nomogram. The diagnostic value of IL-22 in RA-ILD was assessed using ROC. Subsequently, the data were subjected to 30-fold cross-validation. IL-22 levels in the RA-ILD group were lower than in the RA-No-ILD group and were inversely correlated with the severity of RA-ILD. Logistic regression analysis identified IL-22, age, smoking history, anti-mutated citrullinated vimentin antibody (MCV-Ab), and mean corpuscular hemoglobin concentration (MCHC) as independent factors for distinguishing between the groups. The diagnostic value of IL-22 in RA-ILD was moderate (AUC = 0.75) and improved when combined with age, smoking history, MCV-Ab and MCHC (AUC = 0.97). After 30-fold cross-validation, the average AUC was 0.886. IL-22 expression is dysregulated in the pathogenesis of RA-ILD. This study highlights the potential of IL-22, along with other factors, as a valuable biomarker for assessing RA-ILD occurrence and progression.

7.
Adv Sci (Weinh) ; : e2309084, 2024 May 05.
Article En | MEDLINE | ID: mdl-38704694

Esophageal squamous cell carcinoma (ESCC) is a prevalent gastrointestinal cancer characterized by high mortality and an unfavorable prognosis. While combination therapies involving surgery, chemotherapy, and radiation therapy are advancing, targeted therapy for ESCC remains underdeveloped. As a result, the overall five-year survival rate for ESCC is still below 20%. Herein, ESCC-specific DNA aptamers and an innovative aptamer-modified nano-system is introduced for targeted drug and gene delivery to effectively inhibit ESCC. The EA1 ssDNA aptamer, which binds robustly to ESCC cells with high specificity and affinity, is identified using cell-based systematic evolution of ligands by exponential enrichment (cell-SELEX). An EA1-modified nano-system is developed using a natural egg yolk lipid nanovector (EA1-EYLNs-PTX/siEFNA1) that concurrently loads paclitaxel (PTX) and a small interfering RNA of Ephrin A1 (EFNA1). This combination counters ESCC's proliferation, migration, invasion, and lung metastasis. Notably, EFNA1 is overexpressed in ESCC tumors with lung metastasis and has an inverse correlation with ESCC patient prognosis. The EA1-EYLNs-PTX/siEFNA1 nano-system offers effective drug delivery and tumor targeting, resulting in significantly improved therapeutic efficacy against ESCC tumors. These insights suggest that aptamer-modified nano-systems can deliver drugs and genes with superior tumor-targeting, potentially revolutionizing targeted therapy in ESCC.

8.
Front Neurosci ; 18: 1394795, 2024.
Article En | MEDLINE | ID: mdl-38745941

Background: The relationship between early perihematomal edema (PHE) and hematoma expansion (HE) is unclear. We investigated this relationship in patients with acute spontaneous intracerebral hemorrhage (ICH), using radiomics. Methods: In this multicenter retrospective study, we analyzed 490 patients with spontaneous ICH who underwent non-contrast computed tomography within 6 h of symptom onset, with follow-up imaging at 24 h. We performed HE and PHE image segmentation, and feature extraction and selection to identify HE-associated optimal radiomics features. We calculated radiomics scores of hematoma (Radscores_HEA) and PHE (Radscores_PHE) and constructed a combined model (Radscore_HEA_PHE). Relationships of the PHE radiomics features or Radscores_PHE with clinical variables, hematoma imaging signs, Radscores_HEA, and HE were assessed by univariate, correlation, and multivariate analyses. We compared predictive performances in the training (n = 296) and validation (n = 194) cohorts. Results: Shape_VoxelVolume and Shape_MinorAxisLength of PHE were identified as optimal radiomics features associated with HE. Radscore_PHE (odds ratio = 1.039, p = 0.032) was an independent HE risk factor after adjusting for the ICH onset time, Glasgow Coma Scale score, baseline hematoma volume, hematoma shape, hematoma density, midline shift, and Radscore_HEA. The areas under the receiver operating characteristic curve of Radscore_PHE in the training and validation cohorts were 0.808 and 0.739, respectively. After incorporating Radscore_PHE, the integrated discrimination improvements of Radscore_HEA_PHE in the training and validation cohorts were 0.009 (p = 0.086) and -0.011 (p < 0.001), respectively. Conclusion: Radscore_PHE, based on Shape_VoxelVolume and Shape_MinorAxisLength of PHE, independently predicts HE, while Radscore_PHE did not add significant incremental value to Radscore_HEA.

9.
Front Immunol ; 15: 1369892, 2024.
Article En | MEDLINE | ID: mdl-38707897

Background: The transcription factor, SOX13 is part of the SOX family. SOX proteins are crucial in the progression of many cancers, and some correlate with carcinogenesis. Nonetheless, the biological and clinical implications of SOX13 in human breast cancer (BC) remain rarely known. Methods: We evaluated the survival and expression data of SOX13 in BC patients via the UNLCAL, GEPIA, TIMER, and Kaplan-Meier plotter databases. Immunohistochemistry (IHC) was used to verify clinical specimens. The gene alteration rates of SOX13 were acquired on the online web cBioportal. With the aid of the TCGA data, the association between SOX13 mRNA expression and copy number alterations (CNA) and methylation was determined. LinkedOmics was used to identify the genes that co-expressed with SOX13 and the regulators. Immune infiltration and tumor microenvironment evaluations were assessed by ImmuCellAI and TIMER2.0 databases. SOX13 correlated drug resistance analysis was performed using the GDSC2 database. Results: Higher SOX13 expression was discovered in BC tissues in comparison to normal tissues. Moreover, increased gene mutation and amplification of SOX13 were found in BC. Patients with increased SOX13 expression levels showed worse overall survival (OS). Cox analysis showed that SOX13 independently served as a prognostic indicator for poor survival in BC. Further, the expression of SOX13 was also confirmed to be correlated with tumor microenvironment and diverse infiltration of immune cells. In terms of drug sensitivity analysis, we found higher expression level of SOX13 predicts a high IC50 value for most of 198 drugs which predicts drug resistance. Conclusion: The present findings demonstrated that high expression of SOX13 negatively relates to prognosis and SOX13 plays an important role in cancer immunity. Therefore, SOX13 may potentially be adopted as a biomarker for predicting BC prognosis and infiltration of immune cells.


Biomarkers, Tumor , Breast Neoplasms , Gene Expression Regulation, Neoplastic , Tumor Microenvironment , Humans , Breast Neoplasms/immunology , Breast Neoplasms/mortality , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Biomarkers, Tumor/genetics , Prognosis , Tumor Microenvironment/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Drug Resistance, Neoplasm/genetics , Kaplan-Meier Estimate
10.
Article En | MEDLINE | ID: mdl-38710844

Streamflow time series data typically exhibit nonlinear and nonstationary characteristics that complicate precise estimation. Recently, multifactorial machine learning (ML) models have been developed to enhance the performance of streamflow predictions. However, the lack of interpretability within these ML models raises concerns about their inner workings and reliability. This paper introduces an innovative hybrid architecture, the TCN-LSTM-Multihead-Attention model, which combines two layers of temporal convolutional networks (TCN) followed by one layer of long short-term memory (LSTM) units, integrated with a Multihead-Attention mechanism for predicting streamflow with streamflow causation-driven prediction samples (RCDP), employing local and global interpretability studies through Shapley values and partial dependency analysis. The find_peaks method was used to identify peak flow events in the test dataset, validating the model's generality and uncovering the physical causative patterns of streamflow. The results show that (1) compared to the LSTM model with the same hyperparameter settings, the proposed TCN-LSTM-Multihead-Attention hybrid model increased the R2 by 52.9%, 2.5%, 43.1%, and 10.7% respectively at four stations in the test set predictions using RCDP samples. Moreover, comparing the prediction results of the hybrid model under different samples in Hengshan station, the R2 for RCDP increased by 5.06% and 1.22% compared to streamflow autoregressive prediction samples (RAP) and meteorological-soil volumetric water content coupled autoregressive prediction samples (MCSAP) respectively. (2) Historical streamflow data from the preceding 3 days predominantly influences predictions due to strong autocorrelation, with flow quantity (Q) typically emerging as the most significant feature alongside precipitation (P), surface soil moisture (SSM), and adjacent station flow data. (3) During periods of low and normal flow, historical data remains the most crucial factor; however, during flood periods, the roles of upstream inflow and precipitation become significantly more pronounced. This model facilitates the identification and quantification of various hydrodynamic impacts on flow predictions, including upstream flood propagation, precipitation, and soil moisture conditions. It also elucidates the model's nonlinear relationships and threshold responses, thereby enhancing the interpretability and reliability of streamflow predictions.

11.
bioRxiv ; 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38712041

Spinal cord injuries (SCI) often lead to lifelong disability. Among the various types of injuries, incomplete and dyscomplete injuries, where some axons remain intact, offer potential for recovery. However, demyelination of these spared axons can worsen disability. Demyelination is a reversible phenomenon, and drugs like 4-aminopyridine (4AP), which target K + channels in demyelinated axons, show that conduction can be restored. Yet, accurately assessing and monitoring demyelination post-SCI remains challenging due to the lack of suitable imaging methods. In this study, we introduce a novel approach utilizing the positron emission tomography (PET) tracer, [ 18 F]3F4AP, specifically targeting K + channels in demyelinated axons for SCI imaging. Rats with incomplete contusion injuries were imaged up to one month post-injury, revealing [ 18 F]3F4AP's exceptional sensitivity to injury and its ability to detect temporal changes. Further validation through autoradiography and immunohistochemistry confirmed [ 18 F]3F4AP's targeting of demyelinated axons. In a proof-of-concept study involving human subjects, [ 18 F]3F4AP differentiated between complete and incomplete injuries, indicating axonal loss and demyelination, respectively. Moreover, alterations in tracer delivery were evident on dynamic PET images, suggestive of differences in spinal cord blood flow between complete and incomplete injuries. In conclusion, [ 18 F]3F4AP demonstrates efficacy in detecting incomplete SCI in both animal models and humans. The potential for monitoring post-SCI demyelination changes and response to therapy underscores the utility of [ 18 F]3F4AP in advancing our understanding and management of spinal cord injuries. One Sentence Summary: The radiofluorinated derivative of the K + channel blocker 4-aminopyridine, [ 18 F]3F4AP, shows high uptake in demyelinated axons after spinal cord injury potentially serving as a diagnostic imaging agent.

12.
Vet Res ; 55(1): 59, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715095

Klebsiella pneumoniae has become one of the most intractable gram-negative pathogens infecting humans and animals due to its severe antibiotic resistance. Bacteriophages and protein products derived from them are receiving increasing amounts of attention as potential alternatives to antibiotics. In this study, we isolated and investigated the characteristics of a new lytic phage, P1011, which lyses K5 K. pneumoniae specifically among 26 serotypes. The K5-specific capsular polysaccharide-degrading depolymerase dep1011 was identified and expressed. By establishing murine infection models using bovine strain B16 (capable of supporting phage proliferation) and human strain KP181 (incapable of sustaining phage expansion), we explored the safety and efficacy of phage and dep1011 treatments against K5 K. pneumoniae. Phage P1011 resulted in a 60% survival rate of the mice challenged with K. pneumoniae supporting phage multiplication, concurrently lowering the bacterial burden in their blood, liver, and lungs. Unexpectedly, even when confronted with bacteria impervious to phage multiplication, phage therapy markedly decreased the number of viable organisms. The protective efficacy of the depolymerase was significantly better than that of the phage. The depolymerase achieved 100% survival in both treatment groups regardless of phage propagation compatibility. These findings indicated that P1011 and dep1011 might be used as potential antibacterial agents to control K5 K. pneumoniae infection.


Bacteriophages , Klebsiella Infections , Klebsiella pneumoniae , Animals , Klebsiella pneumoniae/virology , Klebsiella pneumoniae/physiology , Mice , Klebsiella Infections/therapy , Klebsiella Infections/veterinary , Klebsiella Infections/microbiology , Bacteriophages/physiology , Disease Models, Animal , Phage Therapy , Female , Glycoside Hydrolases/metabolism , Cattle
13.
Br J Radiol ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38724228

OBJECTIVE: To methodically analyze the swirl sign and construct a scoring system to predict the risk of hematoma expansion (HE) after spontaneous intracerebral hemorrhage (sICH). METHODS: We analysed 231 of 683 sICH patients with swirl signs on baseline noncontrast computed tomography (NCCT) images. The characteristics of the swirl sign were analyzed, including the number, maximum diameter, shape, boundary, minimum CT value of the swirl sign and the minimum distance from the swirl sign to the edge of the hematoma. In the development cohort, univariate and multivariate analyses were used to identify independent predictors of HE, and logistic regression analysis was used to construct the swirl sign score system. The swirl sign score system was verified in the validation cohort. RESULTS: The number and the minimum CT value of the swirl sign were independent predictors of HE. The swirl sign score system was constructed (2 points for the number of swirl signs > 1 and 1 point for the minimum CT value ≤ 41 Hounsfield units). The area under the curve of the swirl sign score system in predicting HE was 0.773 and 0.770 in the development and validation groups, respectively. CONCLUSIONS: The swirl sign score system is an easy-to-use radiological grading scale that requires only baseline NCCT images to effectively identify subjects at high risk of HE. ADVANCES IN KNOWLEDGE: Our newly developed semi-quantitative swirl sign score system greatly improves the ability of swirl sign to predict HE.

14.
Food Funct ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38727519

In order to explore the in vivo anti-food allergy activity of Lactobacillus sakei subsp. sakei-fermented Eucheuma spinosum polysaccharides F1-ESP-3, an ovalbumin (OVA)-induced food allergy mouse model was established by ascites immunization and gavage. The weight, temperature, incidence of diarrhea, levels of allergic mediators and inflammatory factors in the serum of mice were analyzed. We analyzed the differentiation of mouse spleen lymphocytes and the proportion of sensitized mast cells by flow cytometry. The intestinal barrier status of mice was analyzed by intestinal pathological tissue sections and microbiota sequencing. The results showed that F1-ESP-3 could alleviate the food allergy symptoms of mice, such as hypothermia and loose stool; levels of OVA-specific immunoglobulin E, mast cell protease and histamine in the serum of sensitized mice and the proportion of dendritic cells and mast cells in mouse spleen were significantly reduced; in addition, F1-ESP-3 may protect the intestinal barrier and further improve the intestinal microenvironment of food-allergic mice by regulating the abundance of Bacteroidetes and Firmicutes. F1-ESP-3 can further improve the intestinal microenvironment of food-allergic mice by upregulating the levels of Lachnospiraceae, and may affect the signal pathways such as NOD-like receptor, MAPK, I kappa B and antigen processing and presentation.

15.
J Phys Chem Lett ; 15(18): 4992-4999, 2024 May 09.
Article En | MEDLINE | ID: mdl-38695534

The intrinsic anisotropy of NbSe2 provides a favorable prerequisite of second harmonic generation (SHG) and rich possibilities for tailoring its nonlinear optical (NLO) properties. Here we report the highly efficient SHG of mechanically exfoliated NbSe2 flakes. The nonlinear optical response changes with excitation wavelengths, layer thicknesses, and polarizations of the excitation laser. The anisotropic SHG response further exhibits the intrinsic non-centrosymmetric crystal structure and could effectively assign the crystalline orientation of NbSe2 flakes. Interestingly, although NbSe2 flakes with tens of nanometers thickness experience attenuations in SHG performance, more efficient SHG anisotropy ratios were obtained, which are around 4 times higher than that of the 5-layer counterpart. The determined second-order nonlinearities of NbSe2 flakes (monolayer: ∼1.0 × 103 pm/V; 3-layer: ∼73 pm/V) are comparable to those of the commonly reported two-dimensional materials (e.g., MoS2, WSe2, graphene) with the same number of layers and much higher than those of commercial nonlinear optical crystals.

16.
Expert Rev Vaccines ; 23(1): 498-509, 2024.
Article En | MEDLINE | ID: mdl-38695310

BACKGROUND: Vaccination remains the cornerstone of defense against COVID-19 globally. This study aims to assess the safety and immunogenicity profile of innovative vaccines LYB001. RESEARCH DESIGN AND METHODS: This was a randomized, double-blind, parallel-controlled trial, in 100 healthy Chinese adults (21 to 72 years old). Three doses of 30 or 60 µg of SARS-CoV-2 RBD-based VLP vaccine (LYB001), or the SARS-CoV-2 RBD-based protein subunit vaccine (ZF2001, control group) were administered with a 28-day interval. Differences in the incidence of adverse events (AEs) and indicators of humoral and cellular immunity among the different groups were measured. RESULTS: No severe adverse events were confirmed to be vaccine-related, and there was no significant difference in the rate of adverse events between the LYB001 and control group or the age subgroups (p > 0.05). The LYB001 groups had significantly higher or comparable levels of seroconversion rates, neutralization antibody, S protein-binding antibody, and cellular immunity after whole vaccination than the control group. CONCLUSIONS: Our findings support that LYB001 developed on the VLP platform is safe and well tolerated with favorable immunogenicity for fundamental vaccination in healthy adults. Therefore, further larger-scale clinical studies are warranted. TRIAL REGISTRATION: This trial was registered with ClinicalTrials.gov (NCT05552573).


Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Humans , Adult , Middle Aged , Double-Blind Method , COVID-19 Vaccines/immunology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/administration & dosage , Male , Female , Antibodies, Viral/blood , Aged , Young Adult , Antibodies, Neutralizing/blood , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/immunology , Immunogenicity, Vaccine , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/adverse effects , Vaccines, Virus-Like Particle/administration & dosage , Immunity, Cellular , China , Immunity, Humoral , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods , Vaccines, Subunit/immunology , Vaccines, Subunit/adverse effects , Vaccines, Subunit/administration & dosage , East Asian People
17.
Heliyon ; 10(9): e29604, 2024 May 15.
Article En | MEDLINE | ID: mdl-38694053

Objective: To evaluate the reliability and validity of the Chinese-translated Geriatric Locomotive Function Scale (GLFS-25) for the assessment of locomotive syndrome (LS) in individuals surviving malignancies. Methods: 393 tumor survivors at a general hospital in China were recruited. The Chinese version of GLFS-25 was utilized to conduct a cross-sectional survey to ascertain the tool's efficacy in measuring LS in this cohort. The scale's validity was examined through content, structural and discriminant validity assessments, while its reliability was investigated by determining the internal consistency (via Cronbach's α coefficient) and test-retest reliability (via intragroup correlation coefficient, ICC). Results: The Chinese-adapted GLFS-25 demonstrated a robust scale-level content validity index of 0.94, while item-level content validity indices ranged from 0.83 to 1.00 across individual items. The suitability of the scale for structural validity assessment was confirmed via exploratory factor analysis, yielding a Kaiser-Meyer-Olkin measure of 0.930 and a significant Bartlett's test of sphericity (χ2 = 3217.714, df = 300, P < 0.001). Subsequent confirmatory factor analysis (CFA) extracted four distinct factors: Social Activity Engagement, Daily Living Ability, Pain Experience and Physical Mobility. These factors accounted for 72.668 % of the variance, indicating substantial construct validity for measuring LS among this population. CFA supported the model's fit with the following indices: χ2/df = 1.559, RMSEA = 0.077, GFI = 0.924, CFI = 0.941, NFI = 0.919, and TLI = 0.933. The factor loadings for the four factors ranged from 0.771 to 0.931, indicating the items corresponding to the four factors effectively represented the constructs they were designed to measure. The correlation coefficients among the four factors were between 0.306 and 0.469, all lower than the square roots of the respective AVEs (0.838-0.867). This suggests a moderate correlation among the four factors and a distinct differentiation between them, indicating the Chinese version of the GLFS-25 exhibits strong discriminant validity in Chinese tumor survivors. Reliability testing revealed a high Cronbach's α coefficient for the overall scale at 0.961, with the subscales yielding coefficients of 0.751, 0.836, 0.930, and 0.952. The overall ICC was determined to be 0.935, with subscale ICCs ranging from 0.857 to 0.941, reinforcing the scale's reliability in this context. Conclusions: The Chinese version of the GLFS-25 exhibits strong reliability and validity for the assessment of LS in tumor survivors. It may serve as a diagnostic tool for LS, contributing to the prevention and management of musculoskeletal disorders and enhancing the prognosis for this patient population.

18.
World J Hepatol ; 16(4): 601-611, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38689740

BACKGROUND: Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver condition that typically arises in the middle and late stages of pregnancy. Short-chain fatty acids (SCFAs), prominent metabolites of the gut microbiota, have significant connections with various pregnancy complications, and some SCFAs hold potential for treating such complications. However, the metabolic profile of SCFAs in patients with ICP remains unclear. AIM: To investigate the metabolic profiles and differences in SCFAs present in the maternal and cord blood of patients with ICP and determine the clinical significance of these findings. METHODS: Maternal serum and cord blood samples were collected from both patients with ICP (ICP group) and normal pregnant women (NP group). Targeted metabolomics was used to assess the SCFA levels in these samples. RESULTS: Significant differences in maternal SCFAs were observed between the ICP and NP groups. Most SCFAs exhibited a consistent declining trend in cord blood samples from the ICP group, mirroring the pattern seen in maternal serum. Correlation analysis revealed a positive correlation between maternal serum SCFAs and cord blood SCFAs [r (Pearson) = 0.88, P = 7.93e-95]. In both maternal serum and cord blood, acetic and caproic acids were identified as key metabolites contributing to the differences in SCFAs between the two groups (variable importance for the projection > 1). Receiver operating characteristic analysis demonstrated that multiple SCFAs in maternal blood have excellent diagnostic capabilities for ICP, with caproic acid exhibiting the highest diagnostic efficacy (area under the curve = 0.97). CONCLUSION: Compared with the NP group, significant alterations were observed in the SCFAs of maternal serum and cord blood in the ICP group, although they displayed distinct patterns of change. Furthermore, the SCFA levels in maternal serum and cord blood were significantly positively correlated. Notably, certain maternal serum SCFAs, specifically caproic and acetic acids, demonstrated excellent diagnostic efficiency for ICP.

20.
ACS Omega ; 9(18): 20410-20424, 2024 May 07.
Article En | MEDLINE | ID: mdl-38737081

The droplet-to-iron electrochemical reaction is common in nature and industrial production, and it causes damage to the economy, safety, and the environment. The electrochemical reaction of droplet-to-iron is a coupling process of wetting and corrosion. Presently, investigations into electrochemical reactions mainly focus on the corrosions caused by a solution, and wetting is rarely considered. However, for the droplet-to-iron electrochemical reaction, the mechanism of charge transfer in the process is still unclear. In this paper, a reactive molecular dynamics simulation model for the droplet-to-iron electrochemical reaction is developed for the first time. The electrochemical reaction of droplet-to-iron is studied, and the interaction between droplet wetting and corrosion on iron is investigated. The effects of temperature, electric field strength, and salt concentration on the electrochemical reaction are explored. Results show that droplet wetting on the iron surface and the formation of a single-molecular-layer ordered structure are prerequisites for corrosion. The hydroxyl radicals that penetrate the ordered structure acquire electrons from iron atoms on the substrate surface under the action of Coulomb forces and form iron-containing oxides with these iron atoms. The corrosion products and craters lead to a reduced droplet height, which promotes droplet wetting on iron and further intensifies the droplet-to-iron electrochemical reaction.

...