Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Antib Ther ; 7(3): 233-248, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39262442

RESUMEN

Despite their triumph in treating human diseases, antibody therapies for animals have gained momentum more slowly. However, the first approvals of animal antibodies for osteoarthritic pain in cats and dogs may herald the dawn of a new era. For example, goats are vital to economies around the world for their milk, meat, and hide products. It is therefore imperative to develop therapies to safeguard goats-with antibodies at the forefront. Goat antibodies will be crucial in the development of therapeutic antibodies, for example, as tracers to study antibody distribution in vivo, reagents to develop other therapeutic antibodies, and therapeutic agents themselves (e.g., antibody-drug conjugates). Hamstringing this effort is a still-burgeoning understanding of goat antibodies and their derivatization. Historically, goat antibody conjugates were generated through stochastic chemical modifications, producing numerous attachment sites and modification ratios, thereby deleteriously impacting antigen binding. Site-specific methods exist but often require substantial engineering and have not been demonstrated with goat antibodies. Nevertheless, we present herein a novel method to site-specifically conjugate native goat antibodies: chemo-enzymatic remodeling of the native Fc N-glycan introduces a reactive azide handle, after which click chemistry with strained alkyne partners affords homogeneous conjugates labeled only on the Fc domain. This process is robust, and resulting conjugates retain their antigen binding and specificity. To our knowledge, our report is the first for site-specific conjugation of native goat antibodies. Furthermore, our approach should be applicable to other animal antibodies-even with limited structural information-with similar success.

2.
Bioconjug Chem ; 35(4): 465-471, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38499390

RESUMEN

A versatile chemo-enzymatic tool to site-specifically modify native (nonengineered) antibodies is using transglutaminase (TGase, E.C. 2.3.2.13). With various amines as cosubstrates, this enzyme converts the unsubstituted side chain amide of glutamine (Gln or Q) in peptides and proteins into substituted amides (i.e., conjugates). A pleasant surprise is that only a single conserved glutamine (Gln295) in the Fc region of IgG is modified by microbial TGase (mTGase, EC 2.3.2.13), thereby providing a highly specific and generally applicable conjugation method. However, prior to the transamidation (access to the glutamine residue by mTGase), the steric hindrance from the nearby conserved N-glycan (Asn297 in IgG1) must be reduced. In previous approaches, amidase (PNGase F, EC 3.5.1.52) was used to completely remove the N-glycan. However, PNGase F also converts a net neutral asparagine (Asn297) to a negatively charged aspartic acid (Asp297). This charge alteration may markedly change the structure, function, and immunogenicity of an IgG antibody. In contrast, in our new method presented herein, the N-glycan is trimmed by an endoglycosidase (EndoS2, EC 3.2.1.96), hence retaining both the core N-acetylglucosamine (GlcNAc) moiety and the neutral asparaginyl amide. The trimmed glycan also reduces or abolishes Fc receptor-mediated functions, which results in better imaging agents by decreasing nonspecific binding to other cells (e.g., immune cells). Moreover, the remaining core glycan allows further derivatization such as glycan remodeling and dual conjugation. Practical and robust, our method generates conjugates in near quantitative yields, and both enzymes are commercially available.


Asunto(s)
Glutamina , Glicósido Hidrolasas , Glutamina/química , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa , Transglutaminasas/metabolismo , Inmunoglobulina G/química , Polisacáridos/química , Amidas
3.
Autoimmunity ; 56(1): 2282945, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37994408

RESUMEN

Protein posttranslational modifications (PTMs) arise in a number of normal cellular biological pathways and in response to pathology caused by inflammation and/or infection. Indeed, a number of PTMs have been identified and linked to specific autoimmune responses and metabolic pathways. One particular PTM, termed isoaspartyl (isoAsp or isoD) modification, is among the most common spontaneous PTM occurring at physiological pH and temperature. Herein, we demonstrate that isoAsp modifications arise within the ZAP70 protein tyrosine kinase upon T-cell antigen receptor (TCR) engagement. The enzyme protein L-isoaspartate O-methyltransferase (PCMT1, or PIMT, EC 2.1.1.77) evolved to repair isoaspartyl modifications in cells. In this regard, we observe that increased levels of isoAsp modification that arise under oxidative stress are correlated with reduced PIMT activity in patients with systemic lupus erythematosus (SLE). PIMT deficiency leads to T cell hyper-proliferation and hyper-phosphorylation through ZAP70 signaling. We demonstrate that inducing the overexpression of PIMT can correct the hyper-responsive phenotype in lupus T cells. Our studies reveal a phenotypic role of isoAsp modification and phosphorylation of ZAP70 in lupus T cell autoimmunity and provide a potential therapeutic target through the repair of isoAsp modification.


Asunto(s)
Proteína D-Aspartato-L-Isoaspartato Metiltransferasa , Linfocitos T , Humanos , Linfocitos T/metabolismo , Proteína D-Aspartato-L-Isoaspartato Metiltransferasa/genética , Proteína D-Aspartato-L-Isoaspartato Metiltransferasa/metabolismo , Estrés Oxidativo , Autoinmunidad , Procesamiento Proteico-Postraduccional , Proteína Tirosina Quinasa ZAP-70/genética , Proteína Tirosina Quinasa ZAP-70/metabolismo
4.
Antib Ther ; 5(4): 280-287, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36299417

RESUMEN

To date, close to 100 canonical monoclonal antibody drugs have been approved by the FDA; furthermore, a number of antibody-derived therapeutics in nontraditional formats have reached late development stages and the market, and many more are being evaluated in early-stage development. To better reflect this trend and to set up a framework for forward thinking, we herein introduce the concept of AntibodyPlus, embracing any therapeutics with an antibody component. AntibodyPlus therapeutics contain effector modules, in the form of small molecules, nucleic acids, proteins or even cells, to enhance their therapeutic activities against cancer, virus infection and other diseases. In this short review, we discuss historic perspective and current status of therapeutic antibody development, and the scope and categories of AntibodyPlus therapeutics along with their advantages, applications and challenges. We also present several examples that highlight their design principles, potentials and future trends.

5.
Nucleic Acids Res ; 50(16): e92, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-35657088

RESUMEN

DNA methylation, specifically, methylation of cytosine (C) nucleotides at the 5-carbon position (5-mC), is the most studied and significant epigenetic modification. Here we developed a chemoenzymatic procedure to fluorescently label non-methylated cytosines in CpG context, allowing epigenetic profiling of single DNA molecules spanning hundreds of thousands of base pairs. We used a CpG methyltransferase with a synthetic S-adenosyl-l-methionine cofactor analog to transfer an azide to cytosines instead of the natural methyl group. A fluorophore was then clicked onto the DNA, reporting on the amount and position of non-methylated CpGs. We found that labeling efficiency was increased up to 2-fold by the addition of a nucleosidase, presumably by degrading the inactive by-product of the cofactor after labeling, preventing its inhibitory effect. We used the method to determine the decline in global DNA methylation in a chronic lymphocytic leukemia patient and then performed whole-genome methylation mapping of the model plant Arabidopsis thaliana. Our genome maps show high concordance with published bisulfite sequencing methylation maps. Although mapping resolution is limited by optical detection to 500-1000 bp, the labeled DNA molecules produced by this approach are hundreds of thousands of base pairs long, allowing access to long repetitive and structurally variable genomic regions.


Asunto(s)
Arabidopsis , Metilación de ADN , Arabidopsis/genética , Arabidopsis/metabolismo , Islas de CpG/genética , Citosina , ADN/genética , ADN/metabolismo , Epigénesis Genética , Epigenómica , Humanos , Análisis de Secuencia de ADN/métodos , Sulfitos
6.
ChemMedChem ; 17(12): e202100722, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35146940

RESUMEN

Major challenges to chimeric antigen receptor (CAR) T cell therapies include uncontrolled immune activity, off-tumor toxicities and tumor heterogeneity. To overcome these challenges, we engineered CARs directed against small molecules. By conjugating the same small molecule to distinct tumor-targeting antibodies, we show that small molecule specific-CAR T cells can be redirected to different tumor antigens. Such binary switches allow control over the degree of CAR T cell activity and enables simultaneous targeting of multiple tumor-associated antigens. We also demonstrate that ultraviolet light-sensitive caging of small molecules blocks CAR T cell activation. Exposure to ultraviolet light, uncaged small molecules and restored CAR T cell-mediated killing. Together, our data demonstrate that a light-sensitive caging system enables an additional level of control over tumor cell killing, which could improve the therapeutic index of CAR T cell therapies.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Antígenos de Neoplasias , Humanos , Activación de Linfocitos , Neoplasias/terapia , Linfocitos T
7.
J Pharm Sci ; 111(6): 1556-1564, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35167884

RESUMEN

During the development of a therapeutic protein, its quality attributes that pertain to the primary structure must be appropriately characterized, commonly by LC-MS/MS peptide mapping experiments. Extracting attribute information from LC-MS/MS data requires knowledge of the attribute of interest. Therefore, it is important to understand all potential modifications on the therapeutic proteins. In this work, we performed UV and visible light irradiation experiments on several therapeutic proteins, with or without the presence of a photosensitizer. Light-induced modifications were detected and characterized by tryptic digestion followed by LC-MS/MS analysis. A list of potential light-induced modifications, with their respective mass changes, was obtained. These modifications are primarily on methionine, tryptophan, histidine, cysteine, tyrosine and phenylalanine residues. Many of these modifications have not been previously reported on therapeutic proteins. Our findings therefore provide a database of potential light-induced modifications that would enable the routine characterization of light-induced modifications on therapeutic proteins.


Asunto(s)
Metionina , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos , Histidina , Metionina/química , Mapeo Peptídico/métodos
9.
MAbs ; 13(1): 1999195, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34780320

RESUMEN

Antibody-based drugs, which now represent the dominant biologic therapeutic modality, are used to modulate disparate signaling pathways across diverse disease indications. One fundamental premise that has driven this therapeutic antibody revolution is the belief that each monoclonal antibody exhibits exquisitely specific binding to a single-drug target. Herein, we review emerging evidence in antibody off-target binding and relate current key findings to the risk of failure in therapeutic development. We further summarize the current state of understanding of structural mechanisms underpining the different phenomena that may drive polyreactivity and polyspecificity, and highlight current thinking on how de-risking studies may be best implemented in the screening triage. We conclude with a summary of what we believe to be key observations in the field to date, and a call for the wider antibody research community to work together to build the tools needed to maximize our understanding in this nascent area.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Monoclonales/uso terapéutico , Especificidad de Anticuerpos , Factores de Riesgo
10.
Photochem Photobiol ; 96(3): 596-603, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32080860

RESUMEN

Photosensitizer (PS)-antibody conjugates (photoimmunoconjugates, PICs) enable cancer cell-targeted photodynamic therapy (PDT). Nonspecific chemical bioconjugation is widely used to synthesize PICs but gives rise to several shortcomings. The conjugates are heterogeneous, and the process is not easily reproducible. Moreover, modifications at or near the binding sites alter both binding affinity and specificity. To overcome these limitations, we introduce convergent assembly of PICs via a chemo-enzymatic site-specific approach. First, an antibody is conjugated to a clickable handle via site-specific modification of glutamine (Gln) residues catalyzed by transglutaminase (TGase, EC 2.3.2.13). Second, the modified antibody intermediate is conjugated to a compatible chromophore via click chemistry. Utilizing cetuximab, we compared this site-specific conjugation protocol to the nonspecific chemical acylation of amines using N-hydroxysuccinimide (NHS) chemistry. Both the heavy and light chains were modified via the chemical route, whereas, only a glutamine 295 in the heavy chain was modified via chemo-enzymatic conjugation. Furthermore, a 2.3-fold increase in the number of bound antibodies per cell was observed for the site-specific compared with nonspecific method, suggesting that multiple stochastic sites of modification perturb the antibody-antigen binding. Altogether, site-specific bioconjugation leads to homogenous, reproducible and well-defined PICs, conferring higher binding efficiency and probability of clinical success.


Asunto(s)
Química Clic , Inmunoconjugados/química , Fármacos Fotosensibilizantes/química , Acilación , Línea Celular Tumoral , Reacción de Cicloadición , Electroforesis en Gel de Poliacrilamida , Humanos , Focalización Isoeléctrica , Espectrofotometría Ultravioleta
11.
Antib Ther ; 3(4): 271-284, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33644685

RESUMEN

Traditionally, non-specific chemical conjugation, such as acylation of amines on lysine or alkylation of thiols on cysteines, are widely used; however, they have several shortcomings. First, the lack of site-specificity results in heterogeneous products and irreproducible processes. Second, potential modifications near the complementarity determining region (CDR) may reduce binding affinity and specificity. Conversely, site-specific methods produce well-defined and more homogenous antibody conjugates, ensuring developability and clinical applications. Moreover, several recent side-by-side comparisons of site-specific and stochastic methods have demonstrated that site-specific approaches are more likely to achieve their desired properties and functions, such as increased plasma stability, less variability in dose-dependent studies (particularly at low concentrations), enhanced binding efficiency, as well as increased tumor uptake. Herein we review several standard and practical site-specific bioconjugation methods for native antibodies, i.e., those without recombinant engineering. First, chemo-enzymatic techniques, namely transglutaminase (TGase)-mediated transamidation of a conserved glutamine residue and glycan remodeling of a conserved asparagine N-glycan (GlyCLICK), both in the Fc region. Second, chemical approaches such as selective reduction of disulfides (ThioBridge) and N-terminal amine modifications. Furthermore, we list site-specific antibody-drug conjugates (ADCs) in clinical trials along with the future perspectives of these site-specific methods.

12.
Bioconjug Chem ; 30(6): 1617-1621, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-30945848

RESUMEN

Dynamic photoswitches in proteins that impart spatial and temporal control are important to manipulate and study biotic and abiotic processes. Nonetheless, approaches to install these switches into proteins site-specifically are limited. Herein we describe a novel site-specific method to generate photoremovable protein conjugates. Amine-containing chromophores (e.g., venerable  o-nitrobenzyl and less-explored o-nitrophenylethyl groups) were incorporated via transamidation into a glutamine side chain of α-gliadin, LCMV, and TAT peptides, as well as ß-casein and UmuD proteins by transglutaminase (TGase, EC 2.3.2.13). Subsequently, photolysis regenerated the native peptides and proteins. When this modification leads to the reduction or abolishment of certain activities, the process is referred to as caging, as in the case for E. coli polymerase manager protein UmuD. Importantly, this method is simple, robust, and easily adaptable, e.g., all components are commercially available.


Asunto(s)
Colorantes/química , Glutamina/química , Nitrobencenos/química , Proteínas/química , Transglutaminasas/química , Animales , Biocatálisis , Humanos , Luz , Modelos Moleculares , Péptidos/química , Fotólisis
13.
Bioconjug Chem ; 28(9): 2302-2309, 2017 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-28825803

RESUMEN

Alkynes are a key component of click chemistry and used for a wide variety of applications including bioconjugation, selective tagging of protein modifications, and labeling of metabolites and drug targets. However, challenges still exist for detecting alkynes because most 1,2,3-triazole products from alkynes and azides do not possess distinct intrinsic properties that can be used for their facile detection by either fluorescence or mass spectrometry. To address this critical need, a novel brominated coumarin azide was used to tag alkynes and detect alkyne-conjugated biomolecules. This tag has several useful properties: first, it is fluorogenic and the click-chemistry products are highly fluorescent and quantifiable; second, its distinct isotopic pattern facilitates identification by mass spectrometry; and third, its click-chemistry products form a unique pair of reporter ions upon fragmentation that can be used for the quick screening of data. Using a monoclonal antibody conjugated with alkynes, a general workflow has been developed and examined comprehensively.


Asunto(s)
Alquinos/análisis , Anticuerpos Monoclonales/análisis , Azidas/química , Química Clic/métodos , Cumarinas/química , Colorantes Fluorescentes/química , Secuencia de Aminoácidos , Animales , Células CHO , Cricetulus , Fluorescencia , Halogenación , Humanos , Espectrometría de Masas/métodos , Modelos Moleculares , Proteínas Recombinantes/análisis , Espectrometría de Fluorescencia/métodos , Triazoles/química
14.
Chembiochem ; 18(7): 613-617, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28140508

RESUMEN

The enzyme-substrate complex is inherently transient, rendering its detection difficult. In our framework designed for bisubstrate systems-isotope-labeled, activity-based identification and tracking (IsoLAIT)-the common substrate, such as S-adenosyl-l-methionine (AdoMet) for methyltransferases, is replaced by an analogue (e.g., S-adenosyl-l-vinthionine) that, as a probe, creates a tightly bound [enzyme⋅substrate⋅probe] complex upon catalysis by thiopurine-S-methyltransferase (TPMT, EC 2.1.1.67). This persistent complex is then identified by native mass spectrometry from the cellular milieu without separation. Furthermore, the probe's isotope pattern flags even unknown substrates and enzymes. IsoLAIT is broadly applicable for other enzyme systems, particularly those catalyzing group transfer and with multiple substrates, such as glycosyltransferases and kinases.


Asunto(s)
Metiltransferasas/química , Sondas Moleculares/análisis , S-Adenosilhomocisteína/análogos & derivados , S-Adenosilmetionina/química , Radioisótopos de Carbono , Escherichia coli/metabolismo , Marcaje Isotópico , Espectrometría de Masas , Metiltransferasas/metabolismo , Sondas Moleculares/química , Radioisótopos de Nitrógeno , S-Adenosilhomocisteína/química , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Especificidad por Sustrato
15.
Molecules ; 21(9)2016 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-27617989

RESUMEN

Elevated blood concentrations of homocysteine have been well established as a risk factor for cardiovascular diseases and neuropsychiatric diseases, yet the etiologic relationship of homocysteine to these disorders remains poorly understood. Protein N-homocysteinylation has been hypothesized as a contributing factor; however, it has not been examined globally owing to the lack of suitable detection methods. We recently developed a selective chemical method to label N-homocysteinylated proteins with a biotin-aldehyde tag followed by Western blotting analysis, which was further optimized in this study. We then investigated the variation of protein N-homocysteinylation in plasma from rats on a vitamin B12 deficient diet. Elevated "total homocysteine" concentrations were determined in rats with a vitamin B12 deficient diet. Correspondingly, overall levels of plasma protein N-homocysteinylation displayed an increased trend, and furthermore, more pronounced and statistically significant changes (e.g., 1.8-fold, p-value: 0.03) were observed for some individual protein bands. Our results suggest that, as expected, a general metabolic correlation exists between "total homocysteine" and N-homocysteinylation, although other factors are involved in homocysteine/homocysteine thiolactone metabolism, such as the transsulfuration of homocysteine by cystathionine ß-synthase or the hydrolysis of homocysteine thiolactone by paraoxonase 1 (PON1), may play more significant or direct roles in determining the level of N-homocysteinylation.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Homocisteína/sangre , Hiperhomocisteinemia/sangre , Plasma/metabolismo , Procesamiento Proteico-Postraduccional , Deficiencia de Vitamina B 12/sangre , Animales , Ratas
16.
J Am Chem Soc ; 138(9): 2877-80, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26901520

RESUMEN

Identifying an enzyme's substrates is essential to understand its function, yet it remains challenging. A fundamental impediment is the transient interactions between an enzyme and its substrates. In contrast, tight binding is often observed for multisubstrate-adduct inhibitors due to synergistic interactions. Extending this venerable concept to enzyme-catalyzed in situ adduct formation, unknown substrates were affinity-captured by an S-adenosyl-methionine (AdoMet, SAM)-dependent methyltransferase (MTase). Specifically, the electrophilic methyl sulfonium (alkyl donor) in AdoMet is replaced with a vinyl sulfonium (Michael acceptor) in S-adenosyl-vinthionine (AdoVin). Via an addition reaction, AdoVin and the nucleophilic substrate form a covalent bisubstrate-adduct tightly complexed with thiopurine MTase (2.1.1.67). As such, an unknown substrate was readily identified from crude cell lysates. Moreover, this approach is applicable to other systems, even if the enzyme is unknown.


Asunto(s)
Etionina/análogos & derivados , Metiltransferasas/química , Metiltransferasas/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Cromatografía Líquida de Alta Presión , Química Clic , Etionina/química , Etionina/metabolismo , Humanos , Espectrofotometría Ultravioleta , Especificidad por Sustrato
17.
Amino Acids ; 48(4): 1059-1067, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26748652

RESUMEN

Common yet often overlooked, deamidation of peptidyl asparagine (Asn or N) generates aspartic acid (Asp or D) or isoaspartic acid (isoAsp or isoD). Being a spontaneous, non-enzymatic protein post-translational modification, deamidation artifact can be easily introduced during sample preparation, especially proteolysis where higher-order structures are removed. This artifact not only complicates the analysis of bona fide deamidation but also affects a wide range of chemical and enzymatic processes; for instance, the newly generated Asp and isoAsp residues may block or introduce new proteolytic sites, and also convert one Asn peptide into multiple species that affect quantification. While the neutral to mildly basic conditions for common proteolysis favor deamidation, mildly acidic conditions markedly slow down the process. Unlike other commonly used endoproteases, Glu-C remains active under mildly acid conditions. As such, as demonstrated herein, deamidation artifact during proteolysis was effectively eliminated by simply performing Glu-C digestion at pH 4.5 in ammonium acetate, a volatile buffer that is compatible with mass spectrometry. Moreover, nearly identical sequence specificity was observed at both pH's (8.0 for ammonium bicarbonate), rendering Glu-C as effective at pH 4.5. In summary, this method is generally applicable for protein analysis as it requires minimal sample preparation and uses the readily available Glu-C protease.


Asunto(s)
Amidas/química , Artefactos , Asparagina/química , Ácido Aspártico/química , Ácido Isoaspártico/química , Serina Endopeptidasas/química , Hormona Adrenocorticotrópica/química , Secuencia de Aminoácidos , Animales , Tampones (Química) , Calmodulina/química , Bovinos , Exenatida , Concentración de Iones de Hidrógeno , Péptidos/química , Procesamiento Proteico-Postraduccional , Proteolisis , Soluciones , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Ponzoñas/química
18.
Anal Chem ; 87(15): 7529-34, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26151084

RESUMEN

With the advent of new initiatives to develop chemically defined media, cell culture scientists screen many additives to improve cell growth and productivity. However, the introduction or increase of supplements, typically considered beneficial or protective on their own, to the basal media or feed stream may cause unexpected detrimental consequences to product quality. For instance, because cultured cells are constantly under oxidative stress, ascorbic acid (vitamin C, a potent natural reducing agent) is a common additive to cell culture media. However, as reported herein, a recombinant monoclonal antibody (adalimumab) in cell culture was covalently modified by xylosone (molecular weight 148), an oxidative product of ascorbate. Containing reactive carbonyl groups, xylosone modifies various amines (e.g., the N-termini of the heavy and light chains and susceptible lysines), forming either hemiaminal (+148 Da) or Schiff base (imine, +130 Da) products. Our findings show, for the first time, that ascorbate-derived xylosone can contribute to an increase in molecular heterogeneity, such as acidic species. Our work serves as a reminder that additives to cell culture and their metabolites may become reactive and negatively impact the overall product quality and should be carefully monitored with any changes in cell culture conditions.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Ácido Ascórbico/química , Cetosas/metabolismo , Proteínas Recombinantes/metabolismo , Anticuerpos Monoclonales/química , Ácido Ascórbico/metabolismo , Técnicas de Cultivo de Célula , Cetosas/química , Estructura Molecular , Oxidación-Reducción , Proteínas Recombinantes/química
19.
J Sulphur Chem ; 36(2): 135-144, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26005494

RESUMEN

Selenium is an essential micronutrient in humans due to the important roles of the selenocysteine-containing selenoproteins. Organoselenium metabolites are generally found to be substrates for the biochemical pathways of their sulfur analogs, and the redox chemistry of selenomethionine and some other metabolites have been previously reported. We now report the first synthesis and characterization of Se-adenosylselenohomocysteine selenoxide (SeAHO) prepared via hydrogen peroxide oxidation of Se-adenosylselenohomocysteine (SeAH). The selenoxide SeAHO, in contrast to its corresponding sulfoxide S-adenosylhomocysteine (SAHO), can form hydrate, has an electrostatic interaction between the α-amino acid moiety and the highly polar selenoxide functional group, and readily oxidizes glutathione (GSH) and cysteine thiols.

20.
Anal Chem ; 86(18): 8932-6, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25136741

RESUMEN

Recombinant therapeutic monoclonal antibodies exhibit a high degree of heterogeneity that can arise from various post-translational modifications. The formulation for a protein product is to maintain a specific pH and to minimize further modifications. Generally Recognized as Safe (GRAS), citric acid is commonly used for formulation to maintain a pH at a range between 3 and 6 and is generally considered chemically inert. However, as we reported herein, citric acid covalently modified a recombinant monoclonal antibody (IgG1) in a phosphate/citrate-buffered formulation at pH 5.2 and led to the formation of so-called "acidic species" that showed mass increases of 174 and 156 Da, respectively. Peptide mapping revealed that the modification occurred at the N-terminus of the light chain. Three additional antibodies also showed the same modification but displayed different susceptibilities of the N-termini of the light chain, heavy chain, or both. Thus, ostensibly unreactive excipients under certain conditions may increase heterogeneity and acidic species in formulated recombinant monoclonal antibodies. By analogy, other molecules (e.g., succinic acid) with two or more carboxylic acid groups and capable of forming an anhydride may exhibit similar reactivities. Altogether, our findings again reminded us that it is prudent to consider formulations as a potential source for chemical modifications and product heterogeneity.


Asunto(s)
Anticuerpos Monoclonales/química , Ácido Cítrico/química , Aminas/química , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/metabolismo , Cromatografía Líquida de Alta Presión , Concentración de Iones de Hidrógeno , Espectrometría de Masas , Mapeo Peptídico , Péptidos/análisis , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA