Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 107
1.
Anal Chim Acta ; 1312: 342778, 2024 Jul 11.
Article En | MEDLINE | ID: mdl-38834257

BACKGROUND: The technology of capturing circulating tumor cells (CTCs) plays a crucial role in the diagnosis, evaluation of therapeutic efficacy, and prediction of prognosis in lung cancer. However, the presence of complex blood environment often results in severe nonspecific protein adsorption and interferences from blood cells, which negatively impacts the specificity of CTCs capture. There is a great need for development of novel nanomaterials for CTCs capture with prominent anti-nonspecific adsorptions from proteins or blood cells. RESULTS: We present a novel immune magnetic probe Fe3O4@(PEI/AA)4@Apt. The surface of Fe3O4 particles was modified with four layers of PEI/AA composite by layer-by-layer assembly. Furthermore, aptamers targeting epithelial marker EpCAM (SYL3C) and mesenchymal marker CSV (ZY5C) were simultaneously connected on Fe3O4@(PEI/AA)4 to improve the detection of different phenotypic CTCs and reduce false negatives. The results demonstrated that the (PEI/AA)4 coatings not only minimized non-specific protein adsorptions, but also significantly reduced the adsorption rate of red blood cells to a mere 1 %, as a result of which, the Fe3O4@(PEI/AA)4@Apt probe achieved a remarkably high capture efficiency toward CTCs (95.9 %). In the subsequent validation of clinical samples, the probe was also effective in capturing rare CTCs from lung cancer patients. SIGNIFICANCE AND NOVELTY: A (PEI/AA) polymerized composite with controllable layers was fabricated by layer-by-layer self-assembly technique, which displayed remarkable anti-nonspecific adsorption capabilities toward proteins and cells. Importantly, Fe3O4@(PEI/AA)4@Apt probe significantly improved CTCs capture purity in lung cancer patients to 89.36 %. For the first time, this study combined controllable (PEI/AA) layers with magnetic separation to innovatively build a resistant interface that significantly improves the specific capture performances of CTCs, broadening the application of this polymerized composite.


Alginates , Neoplastic Cells, Circulating , Polyethyleneimine , Humans , Neoplastic Cells, Circulating/pathology , Polyethyleneimine/chemistry , Alginates/chemistry , Magnetite Nanoparticles/chemistry , Lung Neoplasms/pathology , Aptamers, Nucleotide/chemistry , Adsorption , Surface Properties , Epithelial Cell Adhesion Molecule/immunology
2.
Histol Histopathol ; : 18759, 2024 May 08.
Article En | MEDLINE | ID: mdl-38804139

Serrated lesions are precursors of some colon cancers. The expression of galectin-3 has been reported to be involved in BRAF and KRAS mutations (the key pathogenic drivers of serrated lesions). This study aimed to investigate the expression intensity and subcellular localization of galectin-3 in serrated colon lesions by immunohistochemistry. The results demonstrated that, regarding expression intensity, galectin-3 expression in serrated colon lesions was significantly upregulated; regarding subcellular localization, the membrane expression of hyperplastic polyps/ sessile serrated lesions (HP/SSL) was weakened, the structure was disorganized and that of traditional serrated adenoma (TSA) was significantly weakened or disappeared, and the nuclear expression of both was positive; in the dysplasia of SSL (SSL-D) and TSA (TSA-HD), galectin-3 expression intensity remained high, and was weakened or disappeared in some nuclei, the expression disorder of the SSL-D cell membrane was reduced, the polarity of the cell was restored, weak expression appeared in the local cell membrane of TSA-HD, and the "serrated" structure of both was reduced or disappeared and seemed to revert more to that seen in common adenomas. In summary, abnormal galectin-3 expression occurs in the early stages of serrated lesions, its expression is characteristic, the dynamic changes in galectin-3 expression are closely related to the histopathological changes and progression of serrated lesions, and further accumulated molecular alterations contribute to this process.

3.
Chemosphere ; 361: 142464, 2024 May 27.
Article En | MEDLINE | ID: mdl-38810795

Hydrogen peroxide (H2O2) synthesis by electrochemical two-electron oxygen reduction has garnered increasing interest as a wide range of potential applications. Gas diffusion electrodes (GDEs) can effectively promote the H2O2 production efficiency by overcoming the oxygen mass transfer limitations but strongly influenced by the electrowetting process along the long-term operation. In this study, the effect of trans-electrode pressure (TEP) of GDE cathode on the electrowetting process was further elucidated. We controlled the TEP values of four types of GDEs: two Ni-based GDEs and two carbon cloth GDEs prepared by hot-pressing or brushing carbon black. SBA-15 was further used to regulate the microstructure of one Ni-based GDE. It was found that an optimal range of TEP occurred for all tested GDEs in terms of the max. concentration, the yield efficiency, the energy consumption, and the stability because TEP may change the triple-phase interface and influence the anti-electrowetting effect. The porosity of hot-pressed Ni GDE can maintain the TEP window and thus enhance the production of H2O2, likely via creating oxygen-containing functional groups and a bimodal pore structure on the electrode, revealed with several characterization techniques including SEM, CA, XPS, Raman spectra, CV and EIS. The porous Ni GDE presented an efficient and stable production of H2O2 for 10 cycles: yielding H2O2 at 4393.2-4602.2 mmol m-2 h-1 with current efficiencies of 94.2-98.7%. The best accumulated H2O2 concentration can reach up to 3.58 ωt% H2O2 at 10 h. The results provide an important reference for the industrial scaleup of electro-production of H2O2 with GDEs.

4.
ESC Heart Fail ; 2024 May 07.
Article En | MEDLINE | ID: mdl-38714485

AIMS: This study aimed to explore the causal relationships between cathepsins and cardiovascular diseases (CVDs) by Mendelian randomization (MR) analysis. METHODS AND RESULTS: Single nucleotide polymorphisms (SNPs) associated with nine cathepsin types (cathepsins B, E, F, G, H, O, S, L2, and Z) were obtained from the INTERVAL study (3301 individuals). CVDs data were acquired from the UK Biobank (coronary atherosclerosis: 14 334 cases, 346 860 controls) and a genome-wide association study (GWAS) (myocardial infarction: 20 917 cases, 440 906 controls; myocarditis: 633 cases, 427 278 controls; chronic heart failure: 14 262 cases, 471 898 controls; angina pectoris: 30 025 cases, 440 906 controls; stable angina pectoris: 17 894 cases, 325 132 controls; unstable angina pectoris: 9481 cases, 446 987 controls; pericarditis: 1795 cases, 453 370 controls). Inverse variance weighted (IVW), MR-Egger, weighted median methods were adopted to conduct univariable MR (UVMR), reverse MR, multivariable MR (MVMR) analyses to estimate causality. The UVMR analyses demonstrated significant causal relationships between higher cathepsin E levels and increased risk of coronary atherosclerosis [IVW: P = 0.0051, odds ratio (OR) = 1.0033, 95% confidence interval (CI) = 1.0010-1.0056] and myocardial infarction (IVW: P = 0.0097, OR = 1.0553, 95% CI = 1.0131-1.0993), while elevated cathepsin L2 levels were causally related to reduced risk of myocarditis (IVW: P = 0.0120, OR = 0.6895, 95% CI = 0.5158-0.9216) and chronic heart failure (IVW: P = 0.0134, OR = 0.9316, 95% CI = 0.8807-0.9854). Reverse MR analyses revealed that myocardial infarction increased cathepsin O levels (IVW: P = 0.0400, OR = 1.0708, 95% CI = 1.0031-1.1431). MVMR analyses treating nine cathepsins together revealed that the positive causality between cathepsin E levels and coronary atherosclerosis risk (IVW: P = 0.0390, OR = 1.0030, 95% CI = 1.0000-1.0060), and the protective effect of cathepsin L2 levels on myocarditis (IVW: P = 0.0030, OR = 0.6610, 95% CI = 0.5031-0.8676) and chronic heart failure (IVW: P = 0.0090, OR = 0.9259, 95% CI = 0.8737-0.9812) remained, as higher cathepsin O levels were found to be causally related to increased risks of myocarditis (IVW: P = 0.0030, OR = 1.6145, 95% CI = 1.1829-2.2034) and chronic heart failure (IVW: P = 0.0300, OR = 1.0779, 95% CI = 1.0070-1.1537). CONCLUSIONS: The study highlights the causalities of cathepsin E, L2, and O on CVDs, offering insights into their roles in cardiovascular biomarkers and therapeutic targets development. Further research is required to apply these genetic findings clinically.

5.
Medicine (Baltimore) ; 103(18): e37943, 2024 May 03.
Article En | MEDLINE | ID: mdl-38701305

BACKGROUND: Lumbar disc herniation was regarded as an age-related degenerative disease. Nevertheless, emerging reports highlight a discernible shift, illustrating the prevalence of these conditions among younger individuals. METHODS: This study introduces a novel deep learning methodology tailored for spinal canal segmentation and disease diagnosis, emphasizing image processing techniques that delve into essential image attributes such as gray levels, texture, and statistical structures to refine segmentation accuracy. RESULTS: Analysis reveals a progressive increase in the size of vertebrae and intervertebral discs from the cervical to lumbar regions. Vertebrae, bearing weight and safeguarding the spinal cord and nerves, are interconnected by intervertebral discs, resilient structures that counteract spinal pressure. Experimental findings demonstrate a lack of pronounced anteroposterior bending during flexion and extension, maintaining displacement and rotation angles consistently approximating zero. This consistency maintains uniform anterior and posterior vertebrae heights, coupled with parallel intervertebral disc heights, aligning with theoretical expectations. CONCLUSIONS: Accuracy assessment employs 2 methods: IoU and Dice, and the average accuracy of IoU is 88% and that of Dice is 96.4%. The proposed deep learning-based system showcases promising results in spinal canal segmentation, laying a foundation for precise stenosis diagnosis in computed tomography images. This contributes significantly to advancements in spinal pathology understanding and treatment.


Deep Learning , Spinal Canal , Spinal Stenosis , Tomography, X-Ray Computed , Humans , Spinal Stenosis/diagnostic imaging , Tomography, X-Ray Computed/methods , Spinal Canal/diagnostic imaging , Male , Lumbar Vertebrae/diagnostic imaging , Female , Middle Aged , Image Processing, Computer-Assisted/methods , Adult , Intervertebral Disc Displacement/diagnostic imaging
6.
iScience ; 27(5): 109698, 2024 May 17.
Article En | MEDLINE | ID: mdl-38655198

Mounting evidence supports the role of neuroinflammation in radiation-induced brain injury (RIBI), a chronic disease characterized by delayed and progressive neurological impairment. Asparagine endopeptidase (AEP), also known as legumain (LGMN), participates in multiple malignancies and neurodegenerative diseases and may potentially be involved in RIBI. Here, we found AEP expression was substantially elevated in the cortex and hippocampus of wild-type (Lgmn+/+) mice following whole-brain irradiation. Lgmn knockout (Lgmn-/-) alleviated neurological impairment caused by whole-brain irradiation by suppressing neuronal senescence. Bulk RNA and metabolomic sequencing revealed AEP's involvement in the antigen processing and presentation pathway and neuroinflammation. This was further confirmed by co-culturing Lgmn+/+ primary neurons with the conditioned media derived from irradiated Lgmn+/+ or Lgmn-/- primary microglia. Furthermore, esomeprazole inhibited the enzymatic activity of AEP and RIBI. These findings identified AEP as a critical factor of neuroinflammation in RIBI, highlighting the prospect of targeting AEP as a therapeutic approach.

7.
Int J Surg ; 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38498406

BACKGROUND: Surgical treatment of complex giant pituitary adenomas (GPAs) presents significant challenges. The efficacy and safety of combining transsphenoidal and transcranial approaches for these tumors remain controversial. In this largest cohort of patients with complex GPAs, we compared the surgical outcomes between those undergoing a combined regimen and a non-combined regimen. We also examined the differences in risks of complications, costs, and logistics between the two groups, which might offer valuable information for the appropriate management of these patients. MATERIALS AND METHODS: This was a multicenter retrospective cohort study conducted at 13 neurosurgical centers. Consecutive patients who received a combined or non-combined regimen for complex GPAs were enrolled. The primary outcome was gross total resection, while secondary outcomes included complications, surgical duration, and relapse. A propensity score-based weighting method was used to account for differences between the groups. RESULTS: Out of 647 patients (298 [46.1%] women, mean age: 48.5 ± 14.0 years) with complex GPAs, 91 were in the combined group and 556 were in the non-combined group. Compared with the non-combined regimen, the combined regimen was associated with a higher probability of gross total resection (50.5% vs. 40.6%, odds ratio [OR]: 2.18, 95% confidence interval [CI]: 1.30-3.63, P = 0.003). The proportion of patients with life-threatening complications was lower in the combined group than in the non-combined group (4.4% vs. 11.2%, OR: 0.25, 95% CI: 0.08-0.78, P = 0.017). No marked differences were found between the groups in terms of other surgical or endocrine-related complications. However, the combined regimen exhibited a longer average surgery duration of 1.3 h (P < 0.001) and higher surgical costs of 22,000 CNY (approximate 3,000 USD, P = 0.022) compared with the non-combined approach. CONCLUSIONS: The combined regimen offered increased rates of total resection and decreased incidence of life-threatening complications, which might be recommended as the first-line choice for these patients.

8.
Phytomedicine ; 128: 155317, 2024 Jun.
Article En | MEDLINE | ID: mdl-38537439

BACKGROUND: Sorafenib (Sora), a multi-target tyrosine kinase inhibitor, is widely recognized as a standard chemotherapy treatment for advanced hepatocellular carcinoma (HCC). However, drug resistance mechanisms hinder its anticancer efficacy. Derived from Withania somnifera, Withaferin A (WA) exhibits remarkable anti-tumor properties as a natural bioactive compound. This study aimed to examine the mechanisms that underlie the impacts of Sora and WA co-treatment on HCC. METHODS: Cell proliferation was evaluated through colony formation and MTT assays. Flow cytometry was employed to determine cellular apoptosis and reactive oxygen species (ROS) levels. The evaluation of apoptosis-related protein levels, DNA damage, and endoplasmic reticulum stress was conducte utilizing IHC staining and western blotting. Moreover, the caspase inhibitor Z-VAD-FMK, ATF4 siRNA, ROS scavenger N-acetyl cysteine (NAC), and TrxR1 shRNA were used to elucidate the underlying signaling pathways. To validate the antitumor effects of Sora/WA co-treatment, in vivo experiments were ultimately executed using Huh7 xenografts. RESULTS: Sora/WA co-treatment demonstrated significant synergistic antitumor impacts both in vivo and in vitro. Mechanistically, the enhanced antitumor impact of Sora by WA was achieved through the inhibition of TrxR1 activity, resulting in ROS accumulation. Moreover, ROS generation induced the activation of DNA damage and endoplasmic reticulum (ER) stress pathways, eventually triggering cellular apoptosis. Pre-treatment with the antioxidant NAC significantly inhibited ROS generation, ER stress, DNA damage, and apoptosis induced by Sora/WA co-treatment. Additionally, the inhibition of ATF4 by small interfering RNA (siRNA) attenuated Sora/WA co-treatment-induced apoptosis. In vivo, Sora/WA co-treatment significantly suppressed tumor growth in HCC xenograft models and decreased TrxR1 activity in tumor tissues. CONCLUSION: Our study suggests that WA synergistically enhances the antitumor effect of Sora, offering promising implications for evolving treatment approaches for HCC.


Apoptosis , Carcinoma, Hepatocellular , DNA Damage , Drug Synergism , Endoplasmic Reticulum Stress , Liver Neoplasms , Mice, Nude , Reactive Oxygen Species , Sorafenib , Withanolides , Withanolides/pharmacology , Endoplasmic Reticulum Stress/drug effects , Humans , Carcinoma, Hepatocellular/drug therapy , Reactive Oxygen Species/metabolism , Liver Neoplasms/drug therapy , Animals , DNA Damage/drug effects , Sorafenib/pharmacology , Cell Line, Tumor , Apoptosis/drug effects , Thioredoxin Reductase 1/metabolism , Mice, Inbred BALB C , Cell Proliferation/drug effects , Mice , Xenograft Model Antitumor Assays , Activating Transcription Factor 4/metabolism
9.
Adv Sci (Weinh) ; 11(15): e2306031, 2024 Apr.
Article En | MEDLINE | ID: mdl-38342617

Overproduction of reactive oxygen species (ROS), metal ion accumulation, and tricarboxylic acid cycle collapse are crucial factors in mitochondria-mediated cell death. However, the highly adaptive nature and damage-repair capabilities of malignant tumors strongly limit the efficacy of treatments based on a single treatment mode. To address this challenge, a self-reinforced bimetallic Mito-Jammer is developed by incorporating doxorubicin (DOX) and calcium peroxide (CaO2) into hyaluronic acid (HA) -modified metal-organic frameworks (MOF). After cellular, Mito-Jammer dissociates into CaO2 and Cu2+ in the tumor microenvironment. The exposed CaO2 further yields hydrogen peroxide (H2O2) and Ca2+ in a weakly acidic environment to strengthen the Cu2+-based Fenton-like reaction. Furthermore, the combination of chemodynamic therapy and Ca2+ overload exacerbates ROS storms and mitochondrial damage, resulting in the downregulation of intracellular adenosine triphosphate (ATP) levels and blocking of Cu-ATPase to sensitize cuproptosis. This multilevel interaction strategy also activates robust immunogenic cell death and suppresses tumor metastasis simultaneously. This study presents a multivariate model for revolutionizing mitochondria damage, relying on the continuous retention of bimetallic ions to boost cuproptosis/immunotherapy in cancer.


Hydrogen Peroxide , Neoplasms , Humans , Reactive Oxygen Species , Adenosine Triphosphate , Cell Death , Mitomycin , Tumor Microenvironment
10.
Sci Total Environ ; 912: 169135, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38070572

Cr(VI) is a well-known toxic pollutant and its remediation has attracted great attention. It is important to continuously discover and explore new high-efficiency Cr(VI) reducing bacteria to further improve the efficiency of Cr(VI) pollution remediation. In this paper, metabolic mechanism of Cr(VI) reduction in a new highly efficient Cr(VI) reducing bacterium, Alicycliphilus denitrificans Ylb10, was investigated. The results showed that Ylb10 could tolerate and completely reduce 450 mg/L Cr(VI). Cr(VI) can be reduced in the intracellular compartment, membrane and the extracellular compartment, with the plasma membrane being the main active site for Cr(VI) reduction. With the addition of NADH, the reduction efficiency of cell membrane components for Cr(VI) increased 2.3-fold. The omics data analysis showed that sulfite reductase CysJ, thiosulfate dehydrogenase TsdA, nitrite reductase NrfA, nitric oxide reductase NorB, and quinone oxidoreductase ChrR play important roles in the reduction of Cr(VI), in the intracellular, and the extracellular compartment, and the membrane of Ylb10, and therefore Cr(VI) was reduced by the combined action of several reductases at these three locations.


Comamonadaceae , Environmental Restoration and Remediation , Chromium/chemistry , Biodegradation, Environmental , Oxidation-Reduction
11.
Genes Nutr ; 18(1): 13, 2023 Sep 09.
Article En | MEDLINE | ID: mdl-37689663

BACKGROUND: Coffee is one of the most consumed beverages in the world, coffee consumption has been growing in the United States over the past 20 years. Periodontitis is defined by the pathologic loss of the periodontal ligament and destruction of the connective tissue attachment and alveolar bone loss and is related to different systemic diseases and conditions. However, the causality has remained unclarified, thus we regarded discovering the causal relationship between coffee consumption and the liability to periodontitis as the objective of the study. METHODS: Coffee consumption was subdivided into binary coffee consumption and continuous coffee consumption to refine the study design. Genetic instruments were stretched from the MRC-IEU's (MRC Integrative Epidemiology Unit) output from the GWAS pipeline using phesant-derived variables based on the UK Biobank, the Gene-Lifestyle Interactions in Dental Endpoints (GLIDE) project, and the joint meta-analysis of a recent GWAS. The IVW (Inverse Variance Weighted) was regarded as the primary method to estimate the causality, a scatter plot revealed the intuitive result, and tests for stability were also carried out. RESULTS: An effect of continuous coffee consumption on the risk of periodontitis was found, with per SD of coffee consumed increases, the risk of periodontitis rises by 1.04% (Odds Ratio of IVW is 1.0104), while the effect of binary coffee consumption on periodontitis did not meet the requirement of indicating a strong causal association, neither were the reverse causality analyses. CONCLUSIONS: The study indicated the causality of continuous coffee consumption to the risk of periodontitis with a relatively small scale of effect estimate and no strong evidence for an effect of binary coffee-consuming behavior on periodontitis. There was also no intensive evidence suggesting reverse causality.

12.
Rev Esp Enferm Dig ; 115(7): 408-409, 2023 07.
Article En | MEDLINE | ID: mdl-37314130

Esophageal diverticulum are rare. However, Esophageal cancer that involves diverticula is relatively rare. Here we reported a rare case of a superficial esophageal cancer with an esophageal diverticulum, which was invisible before the endoscopic submucosal dissection. The cancer was successfully removed by ESD with no perforation.


Carcinoma, Squamous Cell , Diverticulum, Esophageal , Endoscopic Mucosal Resection , Esophageal Neoplasms , Humans , Esophagoscopy , Esophageal Neoplasms/complications , Esophageal Neoplasms/diagnostic imaging , Esophageal Neoplasms/surgery , Diverticulum, Esophageal/complications , Diverticulum, Esophageal/diagnostic imaging , Diverticulum, Esophageal/surgery , Treatment Outcome , Retrospective Studies
13.
Cell Commun Signal ; 21(1): 147, 2023 06 19.
Article En | MEDLINE | ID: mdl-37337282

Fluoropyridine-based chemotherapy remains the most widely used treatment for colorectal cancer (CRC). In this study, we investigated the mechanism by which the natural product Scutellaria baicalensis (Huang Qin; HQ) and one of its main components baicalin enhanced 5-fluorouracil (5-FU) antitumor activity against CRC. Cell proliferation assays, cell cycle analysis, reverse-phase protein array (RPPA) analysis, immunoblot analysis, and qRT-PCR were performed to investigate the mechanism(s) of action of HQ and its active components on growth of CRC cells. HQ exhibited in vitro antiproliferative activity against drug resistant human CRC cells, against human and mouse CRC cells with different genetic backgrounds and normal human colon epithelial cells. In vivo animal models were used to document the antitumor activity of HQ and baicalin. The mechanism of growth inhibitory activity of HQ is due to inhibition of proliferative signaling pathways including the CDK-RB pathway. In addition, HQ enhanced the antitumor effects of 5-FU and capecitabine in vivo. Furthermore, we identified baicalin as an active component of HQ. The combination of baicalin and 5-FU demonstrated synergistic activity against 5-FU-resistant RKO-R10 cells. The combination significantly inhibited in vivo tumor growth greater than each treatment alone. RPPA results showed that the signaling pathway alterations in CRC cells were similar following HQ and baicalin treatment. Together, these results indicate that HQ and its component baicalin enhance the effect of 5-fluorouracil-based chemotherapy via inhibition of CDK-RB pathway. These findings may provide the rational basis for developing agents that can overcome the development of cellular drug resistance. Video Abstract.


Colorectal Neoplasms , Fluorouracil , Humans , Animals , Mice , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Scutellaria baicalensis , Signal Transduction , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Cell Proliferation , Cell Line, Tumor
14.
Nanoscale ; 15(8): 3872-3883, 2023 Feb 23.
Article En | MEDLINE | ID: mdl-36722904

A single epithelial cell adhesion molecule (EpCAM) for circulating tumor cell (CTCs) isolation has been proved to be low in efficiency as it fails to recognize EpCAM-negative CTCs. Meanwhile, the current immunocytochemical (ICC) identification strategy for the captured cells is tedious and time-consuming. To address these issues, we designed a dual-labeled fluorescent immunomagnetic nanoprobe (BP-Fe3O4-AuNR/Apt), by loading magnetic Fe3O4 nanoparticles and gold nanorods (AuNRs) onto black phosphorus (BP) nanosheets and then linking them with Cy3-labeled EpCAM and Texas red-labeled tyrosine protein kinase 7 (PTK7) aptamers, which created a high-performance bio-interface for efficient, heterogeneous CTC capture and rapid self-identification with high accuracy. As few as 5 CTCs could be captured from 1.0 mL PBS, mixed cell solution and lysed blood. What's more, the presence of BP and AuNRs on this capturing interface also allowed us to preliminarily investigate the potential photothermal therapeutic effect of the probe toward CTC elimination. The applicability of the probe was further demonstrated in gastric cancer patients. By detecting the number of CTCs in the blood of gastric cancer patients, the correlations between the CTC number and the disease stage, as well as distant metastasis were systematically explored.


Neoplastic Cells, Circulating , Stomach Neoplasms , Humans , Neoplastic Cells, Circulating/metabolism , Epithelial Cell Adhesion Molecule/metabolism , Cell Line, Tumor , Cell Adhesion Molecules , Receptor Protein-Tyrosine Kinases
15.
Ann Diagn Pathol ; 63: 152105, 2023 Apr.
Article En | MEDLINE | ID: mdl-36621077

Poorly cohesive carcinoma not otherwise specified (PCGCA-NOS) is regarded in the most recent WHO classification as a high-grade malignancy; however, some cases may be associated with a relatively good prognosis. We have studied a series of 115 cases of PCGCA-NOS and were able to identify low-grade features in 14 cases based on three morphological manifestations. Immunohistochemical staining, EBER in situ hybridization, Feulgen staining and flow cytometry were employed. Among the 115 cases of PCGAC-NOS, 14 cases met the criteria of "low grade", accounting for 12.2 %. The "low grade" cases exhibited more shallow invasion and less lymph node metastasis (both P < 0.05); showed less frequent expression of MUC5AC, E-cadherin and p53 (all P < 0.05). Moreover, "low grade" PCGAC-NOS had a lower proliferative index(P < 0.001). We also found that the DNA content was lower in the "low grade" group, and aneuploidy was not detected in the "low grade" group, which was sharply different from the control group (50 %). Last, "low grade" PCGAC-NOS had a more favorable prognosis. A small subset of PCGAC-NOS cases have a low grade nature, and the clinicopathological features, immunophenotypes, and cytogenetics of these "low grade" cases differ from those of traditional PCGAC-NOS.


Adenocarcinoma , Stomach Neoplasms , Humans , Adenocarcinoma/pathology , Prognosis , In Situ Hybridization , Stomach Neoplasms/pathology
16.
BMC Infect Dis ; 23(1): 48, 2023 Jan 23.
Article En | MEDLINE | ID: mdl-36690944

BACKGROUND: Increased folic acid has been found to be latently protective against gynecological infection, including several kinds of vaginosis. In this study, we laid emphasis on whether RBC (Red Blood Cell) folate was associated with the infectious ratio of Trichomonas vaginalis, a kind of anaerobic parasitic protozoan. METHODS: We set RBC folate as the exposure variable and Trichomonas vaginalis as the outcome variable. Other subsidiary variables were regarded as covariates that may work as potential effect modifiers. The cross-sectional study was conducted with two merged waves of the National Health and Nutrition Examination Survey (NHANES) from 2001 to 2004, and a sample of 1274 eligible women (1212 negative and 62 positive in Trichomonas vaginalis infection) was integrated for the exploration of the association between RBC folate and Trichomonas vaginalis infection. Multivariate regression analyses, subgroup analyses, and subsequent smooth curve fittings were conducted to estimate the relationship between RBC folate and Trichomonas vaginalis in women. RESULTS: In the multivariable logistic regression analyses, a negative association was observed between stratified RBC folate status and Trichomonas vaginalis infection with all confounders adjusted. Referencing the lowest RBC folate concentration quartile, the higher concentration quartiles reported a relatively lower infection ratio, while there was a weak correlation between total RBC folate concentration and T. vaginalis (Trichomonas vaginalis) infection. In subgroup analyses stratified by BMI and age, this association was only found significant in high age and BMI groups. CONCLUSIONS: The cross-sectional study indicated a negative association between RBC folic acid and Trichomonas vaginalis infection, and latent effects of BMI and age on the association were also found.


Trichomonas Infections , Trichomonas Vaginitis , Trichomonas vaginalis , Humans , Female , Nutrition Surveys , Cross-Sectional Studies , Folic Acid , Erythrocytes , Trichomonas Vaginitis/diagnosis
17.
Small ; 19(14): e2206174, 2023 04.
Article En | MEDLINE | ID: mdl-36651135

Multidrug resistance (MDR) and metastasis in cancer have become increasingly serious problems since antitumor efficiency is greatly restricted by a single therapeutic modality and the insensitive tumor microenvironment (TME). Herein, metal-phenolic network-functionalized nanoparticles (t-P@TFP NPs) are designed to realize multiple therapeutic modalities and reshape the TME from insensitive to sensitive under multimodal imaging monitoring. After a single irradiation, a near-infrared laser-activated multistage reaction occurs. t-P@TFP NPs trigger the phase transition of perfluoropentane (PFP) to release tannic acid (TA)/ferric ion (Fe3+ )-coated paclitaxel (PTX) and cause hyperthermia in the tumor region to efficiently kill cancer cells. Additionally, PTX is released after the disassembly of the TA-Fe3+ film by the abundant adenosine triphosphate (ATP) in the malignant tumor, which concurrently inhibits ATP-dependent drug efflux to improve sensitivity to chemotherapeutic agents. Furthermore, hyperthermia-induced immunogenic cell death (ICD) transforms "cold" tumors into "hot" tumors with the assistance of PD-1/PD-L1 blockade to evoke antitumor immunogenicity. This work carefully reveals the mechanisms underlying the abilities of these multifunctional NPs, providing new insights into combating the proliferation and metastasis of multidrug-resistant tumors.


Nanoparticles , Neoplasms , Humans , Phototherapy/methods , Paclitaxel/pharmacology , Neoplasms/therapy , Drug Delivery Systems/methods , Drug Resistance, Multiple , Metals , Cell Line, Tumor , Tumor Microenvironment
18.
J Nanobiotechnology ; 21(1): 30, 2023 Jan 25.
Article En | MEDLINE | ID: mdl-36698190

BACKGROUND: Combined therapy based on the effects of cascade reactions of nanoplatforms to combat specific solid tumor microenvironments is considered a cancer treatment strategy with transformative clinical value. Unfortunately, an insufficient O2 supply and the lack of a visual indication hinder further applications of most nanoplatforms for solid tumor therapy. RESULTS: A visualizable nanoplatform of liposome nanoparticles loaded with GOD, H(Gd), and PFP and grafted with the peptide tLyP-1, named tLyP-1H(Gd)-GOD@PFP, was constructed. The double-domain peptide tLyP-1 was used to specifically target and penetrate the tumor cells; then, US imaging, starvation therapy and sonodynamic therapy (SDT) were then achieved by the ultrasound (US)-activated cavitation effect under the guidance of MR/PA imaging. GOD not only deprived the glucose for starvation therapy but also produced H2O2, which in coordination with 1O2 produced by H(Gd), enable the effects of SDT to achieve a synergistic therapeutic effect. Moreover, the synergistic therapy was enhanced by O2 from PFP and low-intensity focused ultrasound (LIFU)-accelerated redox effects of the GOD. The present study demonstrated that the nanoplatform could generate a 3.3-fold increase in ROS, produce a 1.5-fold increase in the maximum rate of redox reactions and a 2.3-fold increase in the O2 supply in vitro, and achieve significant tumor inhibition in vivo. CONCLUSION: We present a visualizable nanoplatform with tumor-penetrating ability that can be unlocked by US to overcome the current treatment problems by improving the controllability of the O2 supply, which ultimately synergistically enhanced cascade therapy.


Feedback, Sensory , Nanoparticles , Humans , Hydrogen Peroxide , Cell Line, Tumor , Nanoparticles/chemistry , Peptides , Hypoxia
19.
Bioact Mater ; 23: 508-523, 2023 May.
Article En | MEDLINE | ID: mdl-36514387

Insufficient infiltration of T cells severely compromises the antitumor efficacy of adoptive cell therapy (ACT) against solid tumors. Here, we present a facile immune cell surface engineering strategy aiming to substantially enhance the anti-tumor efficacy of Th9-mediated ACT by rapidly identifying tumor-specific binding ligands and improving the infiltration of infused cells into solid tumors. Non-genetic decoration of Th9 cells with tumor-targeting peptide screened from phage display not only allowed precise targeted ACT against highly heterogeneous solid tumors but also substantially enhanced infiltration of CD8+ T cells, which led to improved antitumor outcomes. Mechanistically, infusion of Th9 cells modified with tumor-specific binding ligands facilitated the enhanced distribution of tumor-killing cells and remodeled the immunosuppressive microenvironment of solid tumors via IL-9 mediated immunomodulation. Overall, we presented a simple, cost-effective, and cell-friendly strategy to enhance the efficacy of ACT against solid tumors with the potential to complement the current ACT.

20.
Adv Sci (Weinh) ; 10(4): e2204989, 2023 02.
Article En | MEDLINE | ID: mdl-36494092

The emergence of aggregation-induced emission luminogens (AIEgens) has attracted substantial scientific attention. However, their antitumor efficacy in photodynamic therapy (PDT) is significantly restricted by the poor water solubility and limited treatment depth. Therefore, a novel AIEgens-involved therapeutic platform with good permeability and bioavailability is urgently required. Herein, supramolecular chemistry is combined with the AIEgen bis-pyrene (BP) to construct a peptide-AIEgen hybrid nanosystem (PAHN). After intravenous injection, the versatile nanoplatform not only improved the hydrophilicity of BP but also achieved stratified targeting from tumor to mitochondrial and induced mitochondrial dysfunction, thus activating caspase-3 upregulation. Then, sonodynamic therapy (SDT), an alternative modality with high tissue penetrability, is performed to evoke reactive oxygen species (ROS) generation for BP. More importantly, since the hydrophilic shell is separated from the nanosystem by the specific cleavage of caspase-3, the resulting decrease in hydrophilicity induced tight self-aggregation of PAHN residues in situ, further allowing more absorbed energy to be used for ROS generation under ultrasound irradiation and enhancing SDT efficacy. Moreover, severe oxidative stress resulting from ROS imbalance in the mitochondria initiates the immunogenic cell death process, thus evoking antitumor immunogenicity. This PAHN provides prospective ideas into AIE-involved antitumor therapy and design of peptide-AIEgens hybrids.


Photochemotherapy , Caspase 3 , Reactive Oxygen Species , Prospective Studies , Photochemotherapy/methods , Peptides
...