Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Luminescence ; 39(8): e4857, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39129422

RESUMEN

Copper (Cu2+) is a metal chemical element closely related to human life and is widely used in many fields. However, with the discharge of copper wastewater, the water quality will be seriously affected, leading to excessive intake of Cu2+ and a variety of diseases. Hence, there is a pressing need for an effective detection method for Cu2+ in aqueous environments. Leveraging the remarkable attributes of GFP chromophores and indenone derivatives, we have created a novel colorimetric fluorescent probe P-Cu2+, tailored for efficient copper ion detection. The addition of Cu2+ causes the solution to visibly change from colorless to a pronounced yellow, enabling naked-eye detection and offering promise for real sample analysis.


Asunto(s)
Colorimetría , Cobre , Colorantes Fluorescentes , Cobre/química , Cobre/análisis , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Estructura Molecular , Contaminantes Químicos del Agua/análisis , Agua/química , Indanos/química , Indanos/análisis , Iones/análisis , Iones/química , Espectrometría de Fluorescencia
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124822, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39084019

RESUMEN

The highly reactive hypobromous acid (HOBr), which is generated after chlorination process of tap water, acts as a precursor of toxic brominated disinfection by-products (Br-DBPs) and further reacts with organic matter. In addition, HOBr produced from the oxidation of Br- during the degradation of pollutants by peroxymonosulfate (PMS, HSO5-) can be considered as the cause of the expedited degradation of pollutants. Therefore, it is particularly important to detect HOBr level in the water environment. Resazurin was selected as a fluorescent probe for selective recognition of HOBr in the water environment. The probe exhibited excellent spectral performance and showed high sensitivity to HOBr (LOD = 515 nM). This method has a relatively ideal recovery rate for HOBr detection in environmental water samples. Furthermore, the HOBr production during the chlorination disinfection process was simulated and the HOBr generated from this process was detected by the probe. Importantly, the process of HOBr recognition by the probe is accompanied by the change of color. Based on this, the relationship between the change of color B/G value and HOBr concentration was successfully constructed. The probe was loaded on the filter paper to make a test strip, which was utilized to the detection of HOBr. Collectively, this work provided a promising and powerful method for HOBr detection in the environment.

3.
Talanta ; 278: 126427, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38955101

RESUMEN

Malondialdehyde (MDA) and formaldehyde (FA) are highly active carbonyl substances widely present in both biological and abiotic systems. The detection of MDA and FA is of great significance for disease diagnosis and food safety monitoring. However, due to the similarity in structural properties between MDA and FA, very few probes for synergistically detecting MDA and FA were reported. In addition, functional abnormalities in the Golgi apparatus are closely related to MDA and FA, but currently there are no fluorescent probes that can detect MDA and FA in the Golgi apparatus. Therefore, we constructed a simple Golgi-targetable fluorescent probe GHA based on hydrazine moiety as the recognition site to produce a pyrazole structure after reaction with MDA and to generate a CN double bond after reaction with FA, allowing MDA and FA to be distinguished due to different emission wavelengths during the recognition process. The probe GHA has good specificity and sensitivity. Under the excitation of 350 nm, the blue fluorescence was significantly enhanced at 424 nm when the probe reacted with MDA, and the detection limit was 71 nM. At the same time, under the same excitation of 350 nm, the reaction with FA showed a significant enhancement of green fluorescence at 520 nm, with a detection limit of 12 nM for FA. And the simultaneous and high-resolution imaging of MDA and FA in the Golgi apparatus of cells was achieved. In addition, the applications of the probe GHA in food demonstrated it can provide a powerful method for food safety monitoring. In summary, this study offers a promising tool for the synergistic identification and determination of MDA and FA in the biosystem and food, facilitating the revelation of their detailed functions in Golgi apparatus and the monitoring of food safety.


Asunto(s)
Colorantes Fluorescentes , Formaldehído , Aparato de Golgi , Malondialdehído , Formaldehído/química , Formaldehído/análisis , Aparato de Golgi/química , Aparato de Golgi/metabolismo , Colorantes Fluorescentes/química , Humanos , Malondialdehído/análisis , Malondialdehído/química , Límite de Detección , Análisis de los Alimentos/métodos , Células HeLa , Imagen Óptica , Hidrazinas/química , Hidrazinas/análisis , Contaminación de Alimentos/análisis
4.
Talanta ; 278: 126477, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38968656

RESUMEN

Early treatment significantly improves the survival rate of liver cancer patients, so the development of early diagnostic methods for liver cancer is urgent. Liver cancer can develop from viral hepatitis, alcoholic liver, and fatty liver, thus making the above diseases share common features such as elevated viscosity, reactive oxygen species, and reactive nitrogen species. Therefore, accurate differentiation between other liver diseases and liver cancer is both a paramount practical need and challenging. Numerous fluorescent probes have been reported for the diagnosis of liver cancer by detecting a single biomarker, but these probes lack specificity for liver cancer in complex biological systems. Obviously, using multiple liver cancer biomarkers as the basis for judgment can dramatically improve diagnostic accuracy. Herein, we report the first fluorescent probe, LD-TCE, that sequentially detects carboxylesterase (CE) and lipid droplet polarity in liver cancer cells with high sensitivity and selectivity, with linear detection of CE in the range of 0-6 U/mL and a 65-fold fluorescence enhancement in response to polarity. The probe first reacts with CE and releases weak fluorescence, which is then dramatically enhanced due to the decrease in lipid droplet polarity in liver cancer cells. This approach allows the probe to enable specific imaging of liver cancer with higher contrast and accuracy. The probe successfully achieved the screening of liver cancer cells and the precise identification of liver cancer in mice. More importantly, it is not disturbed by liver fibrosis, which is a common pathological feature of many liver diseases. We believe that the LD-TCE is expected to be a powerful tool for early diagnosis of liver cancer.


Asunto(s)
Carboxilesterasa , Colorantes Fluorescentes , Neoplasias Hepáticas , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Humanos , Neoplasias Hepáticas/diagnóstico , Animales , Carboxilesterasa/metabolismo , Ratones , Imagen Óptica , Gotas Lipídicas/química , Gotas Lipídicas/metabolismo , Ratones Endogámicos BALB C
5.
Bioorg Chem ; 150: 107552, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38901280

RESUMEN

As one of the most widely distributed reactive oxygen species in vivo, hydrogen peroxide plays divergent and important roles in cell growth, differentiation and aging. When the level of hydrogen peroxide in the body is abnormal, it will lead to genome mutation and induce irreversible oxidative modification of proteins, lipids and polysaccharides, resulting in cell death or even disease. Therefore, it is significant to develop a sensitive and specific probe for real-time detection of hydrogen peroxide in vivo. In this study, the response mechanism between hydrogen peroxide and probe QH was investigated by means of HRMS and the probe showed good optical properties and high selectivity to hydrogen peroxide. Note that the evaluating of probe biocompatibility resulted from cytotoxicity test, behavioral test, hepatotoxicity test, cardiotoxicity test, blood vessel toxicity test, immunotoxicity test and neurotoxicity test using cell and transgenic zebrafish models with more than 20 toxic indices. Furthermore, the detection performance of the probe for hydrogen peroxide was evaluated by multiple biological models and the probe was proved to be much essential for the monitoring of hydrogen peroxide in vivo.


Asunto(s)
Colorantes Fluorescentes , Peróxido de Hidrógeno , Pez Cebra , Animales , Peróxido de Hidrógeno/análisis , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/farmacología , Humanos , Estructura Molecular , Relación Estructura-Actividad , Imagen Óptica , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/síntesis química , Relación Dosis-Respuesta a Droga , Ratones , Supervivencia Celular/efectos de los fármacos
6.
J Agric Food Chem ; 72(23): 13341-13347, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38830118

RESUMEN

Iron is an essential element in the composition of living organisms and plays a crucial role in a wide range of biological activities. The human body primarily obtains essential iron through the consumption of food. Therefore, it is vital for the health of human body to maintain iron homeostasis. The reducing character of the cellular microenvironment enables Fe2+ to occupy a dominant position within the cell. Hence, there is an urgent need for a simple and sensitive tool that can detect a large amount of Fe2+ in organisms. In this work, a highly specific fluorescent chemodosimeter NPCO ("NP" represents the naphthalimide fluorophore, and "CO" represents the carbamoyl oxime structure) for the detection of Fe2+ with excellent sensitivity (LOD = 82 nM) was constructed by incorporating a novel carbamoyl oxime structure as the recognition group. NPCO can be effectively employed for the detection of Fe2+ in food samples, living cells, and zebrafish. Furthermore, by using soybean sprouts as a model plant, the application of NPCO was expanded to detect Fe2+ in plants. Therefore, NPCO could be used as an excellent assay tool for detecting Fe2+ in organisms and is expected to be an important aid in exploring the mechanism of iron regulation.


Asunto(s)
Colorantes Fluorescentes , Hierro , Oximas , Pez Cebra , Colorantes Fluorescentes/química , Humanos , Animales , Hierro/análisis , Hierro/química , Oximas/química
7.
Anal Chem ; 96(18): 6968-6977, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38662948

RESUMEN

The assessment of atherosclerosis (AS) progression has emerged as a prominent area of research. Monitoring various pathological features of foam cell (FC) formation is imperative to comprehensively assess AS progression. Herein, a simple benzospiropyran-julolidine-based probe, BSJD, with switchable dual-color imaging ability was developed. This probe can dynamically and reversibly adjust its molecular structure and fluorescent properties in different polar and pH environments. Such a polarity and pH dual-responsive characteristic makes it superior to single-responsive probes in dual-color imaging of lipid droplets (LDs) and lysosomes as well as monitoring their interaction. By simultaneously tracking various pathological features, including LD accumulation and size changes, lysosome dysfunction, and dynamically regulated lipophagy, more comprehensive information can be obtained for multiparameter assessment of FC formation progression. Using BSJD, not only the activation of lipophagy in the early stages and inhibition in the later phases during FC formation are clearly observed but also the important roles of lipophagy in regulating lipid metabolism and alleviating FC formation are demonstrated. Furthermore, BSJD is demonstrated to be capable of rapidly imaging FC plaque sites in AS mice with fast pharmacokinetics. Altogether, BSJD holds great promise as a dual-color organelle-imaging tool for investigating disease-related LD and lysosome changes and their interactions.


Asunto(s)
Colorantes Fluorescentes , Células Espumosas , Gotas Lipídicas , Colorantes Fluorescentes/química , Células Espumosas/metabolismo , Células Espumosas/patología , Animales , Ratones , Gotas Lipídicas/metabolismo , Gotas Lipídicas/química , Lisosomas/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/patología , Imagen Óptica , Humanos , Células RAW 264.7 , Concentración de Iones de Hidrógeno , Color
8.
Talanta ; 275: 126091, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38678922

RESUMEN

Hydrogen peroxide (H2O2), as one of reactive oxygen species (ROS) widely present in the human body, is involved in a variety of physiological activities. Many human diseases are associated with abnormal levels of H2O2 in the body. Mitochondria are the main organelles producing H2O2 in the human body, and monitoring the level of H2O2 in mitochondria can help to deepen the understanding of the detailed functions of H2O2 in physiological activities. However, due to the highly dynamic nature of the cells, real-time quantitative monitoring of H2O2 levels in mitochondria remains an ongoing challenge. Herein, a novel highly immobilized mitochondria-targeting fluorescent probe (QHCl) for detection of H2O2 was reasonably constructed based on quinolinium dye containing benzyl chloride moiety. Spectral experimental results demonstrated QHCl possessed outstanding selectivity toward H2O2 (λex/em = 380/513 nm). In addition, QHCl can quantitatively detect H2O2 in the concentration range of 0-20 µM with excellent sensitivity (LOD = 0.58 µM) under the PBS buffer solution (10 mM, pH = 7.4). Finally, bioimaging experiments demonstrated that the probe QHCl was able to be used for accurately detecting both endogenous and exogenous H2O2 in the mitochondria of living cells and zebrafish by its unique mitochondrial immobilization.


Asunto(s)
Colorantes Fluorescentes , Peróxido de Hidrógeno , Mitocondrias , Pez Cebra , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/química , Colorantes Fluorescentes/química , Mitocondrias/metabolismo , Mitocondrias/química , Humanos , Animales , Células HeLa , Imagen Óptica
9.
Talanta ; 275: 126118, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38688087

RESUMEN

Nitrite (NO2-) has been widely recognized by the international community as an important substance affecting water quality safety and human health, and the detection of NO2- has always been a hot topic for researchers. Fluorescent probe method is an emerging and ideal way for detecting NO2-. Due to the high dependence of the reported reactive NO2- fluorescent probes on strong acidic systems, using the idea of photochemistry, a fluorescence analysis method for detecting NO2- was proposed in this work to change the necessity of strong acidic solutions in probe detection process. A 365 nm UV-LED lamp was used to irradiate NO2- in aqueous solution to convert it into hydroxyl radicals (HO·), and capture the photodegradation product of NO2- using coumarin-3-carboxylic acid as probe 3-CCA that can react with HO· to generate only one type of strong fluorescent substance. This probe has excellent photostability, selectivity, and anti-interference ability, and can realize the quantitative detection of NO2- (0-15 µM) in pure aqueous solution with pH of 7.4. In addition, its application in actual water samples is also satisfactory, with a recovery rate of (85.91 %-107.30 %). Importantly, we hope that this photolysis strategy can open up the novel thinking to develop suitable fluorescent probes for the analysis and detection of some hardly detected analytes.

10.
J Mater Chem B ; 12(18): 4398-4408, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38651348

RESUMEN

Neurological disorders are closely linked to the alterations in cell membrane permeability (CMP) and mitochondrial membrane potential (MMP). Changes in CMP and MMP may lead to damage and death of nerve cells, thus triggering the onset and progression of neurological diseases. Therefore, monitoring the changes of these two physiological parameters not only benefits the accurate assessment of nerve cell health status, but also enables providing key information for the diagnosis and treatment of neurological diseases. However, the simultaneous monitoring of these two cellular physiological parameters is still challenging. Herein, we design and synthesize two quinolinium-carbazole-derivated fluorescent probes (OQ and PQ). As isomers, the only difference in their chemical structures is the linking position of the carbazole unit in quinoline rings. Strikingly, such a subtle difference endows OQ and PQ with significantly different organelle-staining behaviors. PQ mainly targets at the nucleus, OQ can simultaneously stain cell membranes and mitochondria in normal cells, and performs CMP and MMP-dependent translocation from the cell membrane to mitochondria then to the nucleus, thus holding great promise as an intracellular translocation probe to image the changes of CMP and MMP. After unraveling the intrinsic mechanism of their different translocation abilities by combining experiments with molecular dynamics simulations and density functional theory calculations, we successfully used OQ to monitor the continuous changes of CMP and MMP in three neurological disease-related cell models, including oxidative stress-damaged, Parkinson's disease, and virus-infected ones. Besides providing a validated imaging tool for monitoring cellular physiological parameters, this work paves a promising route for designing intracellular translocation probes to analyze cellular physiological parameters associated with various diseases.


Asunto(s)
Colorantes Fluorescentes , Potencial de la Membrana Mitocondrial , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Humanos , Enfermedades del Sistema Nervioso , Teoría Funcional de la Densidad , Permeabilidad de la Membrana Celular , Carbazoles/química , Estructura Molecular , Animales , Imagen Óptica
11.
Anal Methods ; 16(3): 442-448, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38165694

RESUMEN

Carbon monoxide (CO) not only causes damage to life and health as an environmental pollutant, but also undertakes many physiological functions in organisms. In particular, developing means that can be used for the determination of CO in organelles will provide insight into the vital role it plays. Studies have shown that mitochondrial respiration is closely related to CO concentrations, so it is critical to develop tools for CO detection in mitochondria. Here, we use a rhodamine derivative that can target mitochondria as fluorophores to construct a mitochondrial-labeled CO fluorescence probe (Rh-CO) with high sensitivity (detection limit: 9.4 nM), excellent water-solubility, and long emission (λem = 630 nm). Prominently, the probe has outstanding mitochondria-targeting capabilities. Moreover, we used transient glucose deprivation (TGD) and heme to stimulate endogenous CO production in living cells and zebrafish, respectively, and the probe exhibited excellent imaging capabilities. All in all, we expect this probe to contribute to a deeper understanding of the role played by CO in mitochondria.


Asunto(s)
Colorantes Fluorescentes , Pez Cebra , Animales , Humanos , Imagen Óptica , Células HeLa , Mitocondrias
12.
Anal Methods ; 15(44): 5947-5977, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37909733

RESUMEN

Cancer is "the sword of Damocles" that threatens human life and health. Therefore, the diagnosis and treatment of cancer have been receiving much attention. Many overexpressed receptors on the surface of cancer cells provide us with an effective way to specifically identify the cancer cells, and receptor targeting strategies are becoming one of the hot ideas to enhance the ability of fluorescent probes to target tumors. Fluorescent probes connected to ligands are targeted at cancer cell surfaces through receptor-mediated endocytosis. Receptor-targeting probes can image and track cancer cells, determine tumor boundaries, monitor deep lesions, and play a role in clinical medicine, such as fluorescent imaging-guided surgery. In this review, based on the perspective of small molecule fluorescent probes, we reviewed the design ideas, photophysical properties, and applications of receptor-targeting probes for detecting biomarkers in imaging and tracing cancer cells and prospected the future developmental direction of such probes. We hope that this review will provide more ideas for the design and development of active targeting probes for receptors and lead to more applications in the medical field.


Asunto(s)
Colorantes Fluorescentes , Neoplasias , Humanos , Neoplasias/diagnóstico por imagen
13.
Anal Chem ; 95(31): 11732-11740, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37490364

RESUMEN

Currently, kinase inhibitors have been applied in the diagnosis or treatment of cancer with their unique advantages. It is of great significance to develop some comprehensive theranostic reagents based on kinase inhibitors to improve the performance of reagents for biomedical applications. Besides, tracking changes in the intracellular environment (e.g., pH) during cancer development and drug delivery is also critical for cancer research and treatment. Therefore, it is an urgent desire to design some novel multifunctional reagents based on kinase inhibitor strategies that can trace changes in the microenvironment of cancer cells. In this paper, a multifunctional theranostic reagent based on Pim-1 kinase inhibitor 5-bromobenzofuran-2-carboxylic acid is proposed. The theranostic probe binds to tumor-specific Pim-1 kinase, releases strong fluorescence, and produces cytotoxicity, thus achieving cell screening and killing effects. Furthermore, the probe can specifically target lysosomes and sensitively respond to pH. It can be used to track the pH changes in the intracellular environment under conditions of autophagy and external stimulation, as a visual tool to monitor pH fluctuations during cancer treatment. In conclusion, this simple but multifunctional theranostic reagent proposed in this work is expected to provide a promising method for cancer diagnosis and therapy.


Asunto(s)
Antineoplásicos , Proteínas Proto-Oncogénicas c-pim-1 , Medicina de Precisión , Línea Celular Tumoral , Antineoplásicos/farmacología , Nanomedicina Teranóstica/métodos , Concentración de Iones de Hidrógeno
14.
Bioorg Chem ; 139: 106733, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37517156

RESUMEN

The amount of copper ions in the environment has an immediate effect on ecology and food safety, Menkes syndrome and Wilson's disease cause accumulation and deficiency of copper ions in the body, respectively, and neurodegenerative diseases are also closely related to copper ion levels. However, the current copper ion detection technology has a high cost, complex operation, and other disadvantages. In this study, a ratiometric fluorescent probe (RB-DH) was rationally constructed to detect copper ions by coupling benzothiazole to rhodol derivatives. It can be used to determine copper ion concentrations in water samples, agricultural products, cells, and zebrafish. Importantly, due to the reversible response of RB-DH to copper ions, the fluctuation of intracellular copper ion content during the release of copper ion-related drugs (Copper gluconate and D-penicillamine) was successfully monitored with RB-DH for the first time. This study demonstrates RB-DH's potential application in the evaluation of related drug release effects and serves as a guide for the establishment of portable detection techniques for other important substances.


Asunto(s)
Cobre , Colorantes Fluorescentes , Animales , Pez Cebra , Iones , Espectrometría de Fluorescencia
15.
Anal Chim Acta ; 1267: 341338, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37257969

RESUMEN

Nowadays, more and more studies have linked the abnormal expression of active molecules in organelles with the occurrence of diseases, so there is an urgent need to develop tools for detecting active molecules in specific organelles. However, the recognition receptors of most organelle-targeting probes currently developed always remain active, which easily causes them to react with the analyte in the cytoplasm, thus misjudging the role of the analyte in the physiological and pathological processes. Therefore, it is of great significance to develop a new strategy for the design of probes capable of high-fidelity imaging of the analyte in specific organelles. Herein, we propose a new strategy that the activation of recognition receptors that can be triggered by the microenvironment of targeting organelles. Based on this strategy, we develop a novel lysosome-targeting fluorescent probe (Lyso-SO2) for imaging of sulfur dioxide (SO2) with high-fidelity in lysosomes. The inert probe is activated by the acidic environment in the lysosome and then responds quickly (<2 s) and sensitively (LOD = 0.34 µM) to SO2. This paradigm by taking full advantage of the features of the organelle microenvironment provides a promising methodology for developing organelle-targeting probes for high-fidelity imaging.


Asunto(s)
Lisosomas , Orgánulos , Humanos , Lisosomas/metabolismo , Colorantes Fluorescentes/metabolismo , Imagen Óptica , Microscopía Fluorescente/métodos , Células HeLa
16.
Talanta ; 260: 124567, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37121140

RESUMEN

Theranostic probe is becoming a powerful tool for diagnosis and treatment of cancer. Although some theranostic probes have been successfully developed, there is still a great room for improvement in sensitive diagnosis and efficient treatment. Herein, we developed a novel GSH-activable theranostic probe NC-G, which uses 1,8-naphthalimide-4-sulfonamide as a fluorescence imaging group and crizotinib as a highly toxic kinase inhibitor to tumor cells. The probe not only has high sensitivity (DL = 74 nM) and specificity, but also can detect GSH sensitively in cells and zebrafish. In addition, probe NC-G can not only show more obvious fluorescence in tumor cells to achieve sensitive diagnosis of tumor cells, but also release the inhibitor crizotinib to achieve high toxicity to tumor cells. It is worth noting that the consumption of GSH can cause oxidative stress response of cells and the release of SO2 can induce cell apoptosis during the recognition process of the probe and GSH. Thus, the synergistic effect of crizotinib, GSH depletion, and SO2 release provides a highly effective therapeutic feature for tumor cells. Therefore, probe NC-G can serve as an excellent theranostic probe for sensitive imaging and highly effective treatment of tumor cells.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Medicina de Precisión , Crizotinib , Pez Cebra , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Imagen Óptica/métodos , Glutatión , Colorantes Fluorescentes/farmacología
17.
Bioorg Chem ; 135: 106498, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37060848

RESUMEN

Nowadays, the selective release of therapeutic drugs into tumor cells has become an important way of tumor treatment due to the high side effects of chemotherapy drugs. As one of the gas mediators, hydrogen sulfide (H2S) is closely related to cancer. Due to the high content of H2S in tumor cells, it can be used as a signaling molecule that triggers the release of drugs to achieve the selective release of therapeutic drugs. In addition, dual-channel fluorescence imaging technology can be better applied to monitor the drug delivery process and distinguish the state before and after drug release, so as to better track the effect of drug therapy. Based on this, we used NBD amines (NBD-NHR) as the recognition group of H2S and connected the tyrosine kinase inhibitor crizotinib to construct an activated dual-channel fluorescent probe CZ-NBD. After the probe enters the tumor cells, it consumes H2S and releases crizotinib, which is highly toxic to the tumor cells. Importantly, the probe displays significant fluorescence changes in different cells, enabling not only the screening of tumor cells, but also tracking and monitoring drug release and tumor cell activity. Therefore, the construction of probe CZ-NBD provides a new strategy for drug release monitoring in tumor cells.


Asunto(s)
Colorantes Fluorescentes , Sulfuro de Hidrógeno , Humanos , Colorantes Fluorescentes/farmacología , Crizotinib , Liberación de Fármacos , Transducción de Señal , Células HeLa
18.
Sci Total Environ ; 857(Pt 3): 159488, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36265623

RESUMEN

The concentration of copper ions (Cu2+) in the environment is closely related to water quality, food, and biological health. As an indispensable metal element for the human body, its content is closely related to many diseases. However, the current detection methods for Cu2+ have some limitations, such as complicated operations and unfavorable on-site analysis. Therefore, this work constructs a novel ratiometric fluorescent probe (QLP), which has the advantages of rapid response, good anti-interference ability and high sensitivity. It has been successfully used for the detection of Cu2+ in water samples, soil, and food. In addition, low cytotoxicity and strong tissue penetration make it suitable for the detection of Cu2+ in living cells and zebrafish, offering a chemical tool for exploring the physiological and pathological processes related to Cu2+. It is important to use probe QLP and portable UV lamp to create an easy-to-operate Cu2+ detection platform, which can quickly detect Cu2+ on-site by combining with a smartphone. This work not only provides a detection tool for on-site analysis of Cu2+, but also provides a reference strategy for the development of on-site detection methods for other environmental pollutants.


Asunto(s)
Cobre , Teléfono Inteligente , Animales , Humanos , Cobre/análisis , Pez Cebra , Iones/análisis , Colorantes Fluorescentes , Espectrometría de Fluorescencia
19.
Front Oncol ; 12: 995745, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267981

RESUMEN

Infantile hemangioma (IH) is the most common microvascular tumor of infancy involving the area of head and neck. One of the most important independent risk factors of IH is the hypoxia microenvironment. Fluorescent chemosensor provides a noninvasive intervention, high spatiotemporal resolution, ultrasensitive response, and real-time feedback approach to reveal the hypoxic status of cells. Our research group developed an ultrasensitive fluorescent chemosensor, HNT-NTR, and investigated the potential ability of imaging the hypoxic status of hemangioma-derived endothelial cells (HemECs). In this study, we successfully visualized the propranolol (PRN) treatment in HemECs using NHT-NTR with "Turn-off" sensing method. This chemosensor exhibited high sensitivity and selectivity for optical imaging of hypoxic status with fast responsiveness, real-time feedback and durable photostability of the fluorescent signal. It was also confirmed that HNT-NTR could monitor nitroreductase in vivo. Paramountly, we expected this chemosensor to offer an available optical method for imaging of the hypoxic status and visualizing the therapeutic status of PRN therapy in IH with the hypoxia-imaging capability.

20.
Anal Chim Acta ; 1230: 340337, 2022 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-36192056

RESUMEN

Considering that mercury ions (Hg2+) have long been a threat to human health and the environment due to their persistence, mobility and bioenrichment, the detection and removal of Hg2+ is of great significance. Therefore, a simple water-soluble naphthalimide derived fluorescent dye with AIEE characteristics was reasonably constructed based on twisted intramolecular charge transfer (TICT) mechanism, a series of probes were synthesized to demonstrate this mechanism. The probe NIDEA (naphthalimide-diethanolamine) bonding Hg2+ through the specific combination of the N-unsubstituted naphthalimide group and Hg2+ to form a classic "imide-Hg-imide" structure. Moreover, the introduction of diethanolamine moiety enhanced the water-solubility of the probe, and also made the dye molecule possess the feature of AIEE. The fluorescence titration experiment showed that there were two good linear relationships between the fluorescence intensity of the probe NIDEA and the concentration of Hg2+ in the range of 0-2.5 µM and 2.5-7.5 µM, and the limit of detection was 46.7 nM. Also, the probe could detect Hg2+ in aqueous solution sensitively, ensuring its application in the actual water sample in the environment and living cells. At the same time, NIDEA can be used to detect Hg2+ by Tyndall effect (TE) without limitation of instrument and technology, the limit of detection was 20.9 nM. Furthermore, this paradigm by introduction of the highly effective TICT structure supports a promising methodology for the construction of simple water-soluble AIE/AIEE-active probes.


Asunto(s)
Mercurio , Etanolaminas , Colorantes Fluorescentes/química , Humanos , Naftalimidas/química , Espectrometría de Fluorescencia , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA