Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Macromolecules ; 57(12): 5561-5577, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38948183

RESUMEN

Traditional π-conjugated luminescent macromolecules typically suffer from aggregation-caused quenching (ACQ) and high cytotoxicity, and they require complex synthetic processes. In contrast, nonconventional luminescent macromolecules (NCLMs) with nonconjugated structures possess excellent biocompatibility, ease of preparation, unique luminescence behavior, and emerging applications in optoelectronics, biology, and medicine. NCLMs are currently believed to produce inherent luminescence due to through-space conjugation of overlapping electron orbitals in solid/aggregate states. However, as experimental facts continue to exceed expectations or even overturn some previous assumptions, there is still controversy about the detailed luminous mechanism of NCLMs, and extensive studies are needed to further explore the mechanism. This Perspective highlights recent progress in NCLMs and classifies and summarizes these advances from the viewpoint of molecular design, mechanism exploration, applications, and challenges and prospects. The aim is to provide guidance and inspiration for the huge fundamental and practical potential of NCLMs.

2.
ACS Macro Lett ; 13(1): 52-57, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38147539

RESUMEN

The development of single-component materials with low cytotoxicity and multichannel fluorescence imaging capability is a research hotspot. In the present work, highly electron-deficient pyrazine monomers were covalently connected into a polyurethane backbone using addition polymerization with terminal poly(ethylene glycol) monomethyl ether units containing a high density of electron pairs. Thereby, an amphiphilic polyurethane-pyrazine (PUP) derivative has been synthesized. The polymer displays cluster-induced emission through compact inter- and/or intramolecular noncovalent interactions and extensive through-space electron coupling and delocalization. Molecular rigidity facilitates red-shifted emission. Based on hydrophilic/hydrophobic interactions and excitation dependence emission at low concentrations, PUP has been self-assembled into fluorescent nanoparticles (PUP NPs) without additional surfactant. PUP NPs have been used for cellular multicolor imaging to provide a variety of switchable colors on demand. This work provides a simple molecular design for environmentally sustainable, luminescent materials with excellent photophysical properties, biocompatibility, low cytotoxicity, and color modulation.


Asunto(s)
Polietilenglicoles , Poliuretanos , Polietilenglicoles/química , Polímeros/química , Pirazinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...