Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurotrauma ; 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38009201

RESUMEN

Spinal cord epidural stimulation can promote the recovery of motor function in individuals with severe spinal cord injury (SCI) by enabling the spinal circuitry to interpret sensory information and generate related neuromuscular responses. This approach enables the spinal cord to generate lower limb extension patterns during weight bearing, allowing individuals with SCI to achieve upright standing. We have shown that the human spinal cord can generate some standing postural responses during self-initiated body weight shifting. In this study, we investigated the ability of individuals with motor complete SCI receiving epidural stimulation to generate standing reactive postural responses after external perturbations were applied at the trunk. A cable-driven robotic device was used to provide constant assistance for pelvic control and to deliver precise trunk perturbations while participants used their hands to grasp onto handlebars for self-balance support (hands-on) as well as when participants were without support (free-hands). Five individuals with motor complete SCI receiving lumbosacral spinal cord epidural stimulation parameters specific for standing (Stand-scES) participated in this study. Trunk perturbations (average magnitude: 17 ± 3% body weight) were delivered randomly in the four cardinal directions. Participants attempted to control each perturbation such that upright standing was maintained and no additional external assistance was needed. Lower limb postural responses were generally more frequent, larger in magnitude, and appropriately modulated during the free-hands condition. This was associated with trunk displacement and lower limb loading modulation that were larger in the free-hands condition. Further, we observed discernible lower limb muscle synergies that were similar between the two perturbed standing conditions. These findings suggest that the human spinal circuitry involved in postural control retains the ability to generate meaningful lower limb postural responses after SCI when its excitability is properly modulated. Moreover, lower limb postural responses appear enhanced by a standing environment without upper limb stabilization that promotes afferent inputs associated with a larger modulation of ground reaction forces and trunk kinematics. These findings should be considered when developing future experimental frameworks aimed at studying upright postural control and activity-based recovery training protocols aimed at promoting neural plasticity and sensory-motor recovery.

2.
Acta Pharm Sin B ; 13(7): 3106-3120, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37521859

RESUMEN

Fibrosis is one of the key factors that lead to the immune exclusion of solid tumors. Although degradation of fiber is a promising strategy, its application was still bottlenecked by the side effects of causing metastasis, resulting in the failure of immunotherapy. Here, we developed an antimetastatic polymer (HPA) for the delivery of chemo-drug and antifibrotic siPAI-1 to form the nano-permeator. Nano-permeator shrank after protonation and deeply penetrated into the tumor core to down-regulate the expression of PAI-1 for antifibrosis, and further promoted the sustained infiltration and activation of T cells for killing tumor cells. Moreover, metastasis after fiber elimination was prevented by multivalent CXCR4 antagonistic HPA to reduce the attraction of CXCL12 secreted by distant organs. The administration of stroma-alleviated immunotherapy increased the infiltration of CD8+ T cells to 52.5% in tumor tissues, inhibiting nearly 90% metastasis by HPA in distant organs. The nano-permeator reveals the mechanism and correlation between antifibrosis and antimetastasis and was believed to be the optimizing immunotherapy for solid fibrotic tumors.

3.
Bioengineering (Basel) ; 10(2)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36829620

RESUMEN

Hand pose estimation (HPE) plays an important role during the functional assessment of the hand and in potential rehabilitation. It is a challenge to predict the pose of the hand conveniently and accurately during functional tasks, and this limits the application of HPE. In this paper, we propose a novel architecture of a shifted attention regression network (SARN) to perform HPE. Given a depth image, SARN first predicts the spatial relationships between points in the depth image and a group of hand keypoints that determine the pose of the hand. Then, SARN uses these spatial relationships to infer the 3D position of each hand keypoint. To verify the effectiveness of the proposed method, we conducted experiments on three open-source datasets of 3D hand poses: NYU, ICVL, and MSRA. The proposed method achieved state-of-the-art performance with 7.32 mm, 5.91 mm, and 7.17 mm of mean error at the hand keypoints, i.e., mean Euclidean distance between the predicted and ground-truth hand keypoint positions. Additionally, to test the feasibility of SARN in hand movement recognition, a hand movement dataset of 26K depth images from 17 healthy subjects was constructed based on the finger tapping test, an important component of neurological exams administered to Parkinson's patients. Each image was annotated with the tips of the index finger and the thumb. For this dataset, the proposed method achieved a mean error of 2.99 mm at the hand keypoints and comparable performance on three task-specific metrics: the distance, velocity, and acceleration of the relative movement of the two fingertips. Results on the open-source datasets demonstrated the effectiveness of the proposed method, and results on our finger tapping dataset validated its potential for applications in functional task characterization.

4.
Angew Chem Int Ed Engl ; 62(8): e202217547, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36585393

RESUMEN

Organic single crystals (OSCs) with excellent flexibility and unique optical properties are of great importance due to their broad applicability in optical/optoelectronic devices and sensors. Nevertheless, fabricating flexible OSCs with room-temperature phosphorescence (RTP) remains a great challenge. Herein, we propose a host-guest doping strategy to achieve both RTP and flexibility of OSCs. The single-stranded crystal is highly bendable upon external force application and can immediately return to its original straight shape after removal of the stress, impressively emitting bright deep-red phosphorescence. The theoretical and experimental results demonstrate that the bright RTP arises from Förster resonance energy transfer (FRET) from the triphenylene molecules to the dopants. This strategy is both conceptually and synthetically simple and offers a universal approach for the preparation of flexible OSCs with RTP.

5.
Artículo en Inglés | MEDLINE | ID: mdl-36350871

RESUMEN

Seated postural limit defines the boundary of a region such that for any excursions made outside this boundary a subject cannot return the trunk to the neutral position without additional external support. The seated postural limits can be used as a reference to provide assistive support to the torso by the Trunk Support Trainer (TruST). However, fixed boundary representations of seated postural limits are inadequate to capture dynamically changing seated postural limits during training. In this study, we propose a conceptual model of dynamic boundary of the trunk center by assigning a vector that tracks the postural-goal direction and trunk movement amplitude during a sitting task. We experimented with 20 healthy subjects. The results support our hypothesis that TruST intervention with an assist-as-needed force controller based on dynamic boundary representation could achieve more significant sitting postural control improvements than a fixed boundary representation. The second contribution of this paper is that we provide an effective approach to embed deep learning into TruST's real-time controller design. We have compiled a 3D trunk movement dataset which is currently the largest in the literature. We designed a loss function capable of solving the gate-controlled regression problem. We have proposed a novel deep-learning roadmap for the exploration study. Following the roadmap, we developed a deep learning architecture, modified the widely used Inception module, and then obtained a deep learning model capable of accurately predicting the dynamic boundary in real-time. We believe that this approach can be extended to other rehabilitation robots towards designing intelligent dynamic boundary-based assist-as-needed controllers.


Asunto(s)
Aprendizaje Profundo , Torso , Humanos , Sedestación , Movimiento , Equilibrio Postural
6.
Food Res Int ; 159: 111643, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35940816

RESUMEN

Trichosanthes kirilowii Maxim seed is a primary source of edible vegetable oil and possesses a high nutritional value, making them extremely beneficial to humanity. To promote the extraction process of Trichosanthes kirilowii Maxim seed oil, the effect of microwave heating time (700 W for 0, 2, 4, and 6 min) on lipid composition, chemical properties, and antioxidant activity of oils was studied. The results showed that the oil yield of the seed increased with the microwave heating time. Besides, microwave heating time significantly affects (p < 0.05) DPPH and tocopherols, and the IC50 value of DPPH was highest with microwave heating for 6 min, whatever the shells are reserved. The tocopherol content was highest with microwave heating for 2 min in the seed shell oil, which was 1930.60 mg/kg. The longer microwave heating time could improve the oil yield and antioxidant activity of Trichosanthes kirilowii Maxim seed oil. The seed shell also affects chemical properties, fatty acid composition, antioxidant activity, and tocopherol contents of the Trichosanthes kirilowii Maxim seed oil. The Trichosanthes kirilowii Maxim seed shell oil has higher DPPH and tocopherols contents than seed kernel oil, while seed kernel oils showed higher oil yield and acid value. Our finding is valuable for manufacturers to choose suitable means to produce Trichosanthes kirilowii Maxim seed oil of required qualities and chemical compositions for targeted use.


Asunto(s)
Trichosanthes , Antioxidantes/análisis , Calefacción , Microondas , Aceites de Plantas/análisis , Semillas/química , Tocoferoles/análisis , Trichosanthes/química
7.
J Control Release ; 341: 892-903, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34953982

RESUMEN

Metastasis is refractory systemic disease resulting in low survival rate of breast cancer patients, especially in the late stage. The processes of metastasis are mainly initiated by strong "attractive force" from distant organs and deteriorated by weak "adhesion force" in primary tumor. Here, we reported "attractive/adhesion force" dual-regulatory nanogels (CQ-HF/PTX) for the precise treatment of both primary and metastasis of metastatic breast cancer. Hydroxychloroquine (HCQ) and hydrophobic Fmoc were grafted on hydrophilic hydroxyethyl starch (HES) to obtain amphiphilic CQ-HF polymer, which was assembly with chemotherapy drug paclitaxel (PTX) to form the nanogels for anti-primary tumor. Meanwhile, CQ-HF/PTX nanogels play two roles in anti-metastasis: i) For reducing the "attractive force", it could block the CXCR4/SDF-1 pathway, preventing tumor cells metastasis to the lung; ii) For reinforcing "adhesion force", it could inhibit the excessive autophagy for hindering the degradation of paxillin and enhancing the cell adhesion. As a result, dual-regulatory CQ-HF/PTX nanogels dramatically inhibited tumor and the lung metastasis of mouse breast cancer. Therefore, the fabricating of synergetic dual-regulatory nanogels uncovered the explicit mechanism and provided an efficient strategy for combating malignant metastatic tumors.


Asunto(s)
Neoplasias de la Mama , Animales , Autofagia , Neoplasias de la Mama/patología , Adhesión Celular , Femenino , Humanos , Ratones , Nanogeles , Paclitaxel , Receptores CXCR4
8.
Angew Chem Int Ed Engl ; 60(15): 8510-8514, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33506648

RESUMEN

Piezochromic organic materials that present a large difference in fluorescence wavelength in the near-infrared region have important potential applications; however, few such metal-free luminophores have been reported. In this study, we design and prepare π-conjugated electron acceptors whose planar conformation can be locked by the noncovalent interactions. The planar fused-ring geometry can narrow the optical band gap, enhance the molecular stability and rigidity, as well as increase the radiative rate. As expected, the polymorphs Re-phase and Ni-phase emit the high-brightness fluorescence with wavelength maxima (λem,max ) at 615 and 727 nm, respectively. Upon full grinding, the λem,max of Re-phase is bathochromically shifted to 775 nm. The ground powder of Re-phase becomes metastable as a consequence of noncovalent conformational locking and that the red to near-infrared (large colour difference) mechanochromism arises from the high degree of conformational coplanarity. This strategy is both conceptually and synthetically simple and offers a promising approach to the development of organic piezochromic materials with wide-range redshift and excellent penetrability.

9.
Int J Pharm ; 589: 119763, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32898629

RESUMEN

Phototherapy exerts its anticancer effects by converting laser radiation energy into hyperthermia or reactive singlet oxygen (1O2). In this study, we developed chitosan nanoparticles (CS NPs) encapsulating both photothermal (IR780) and photodynamic (5-Aminolevulinic acid (5-ALA)) reagents for photothermally enhanced photodynamic therapy by noninvasive oral administration. The 5-ALA&IR780@CS NPs were stable in acidic conditions similar to the gastric environment, which greatly improved drug oral absorption and local accumulation in subcutaneous mouse colon tumors (CT-26 cells) following oral gavage. Mechanistic studies revealed that the co-delivery system can lead to photothermally enhanced photodynamic effects against cancer cells by increasing oxidative stress, including the elevation of ROS, superoxide and 1O2 production. Additionally, significant therapeutic efficacy for cancer treatment were observed in vivo after oral administration of 5-ALA&IR780@CS NPs, without causing any overt adverse effects. Our work highlights the great potential of photothermally enhanced photodynamic therapy by CS NPs for colon cancer management via oral route.


Asunto(s)
Quitosano , Neoplasias del Colon , Hipertermia Inducida , Nanopartículas , Fotoquimioterapia , Animales , Neoplasias del Colon/tratamiento farmacológico , Indoles , Ratones
10.
Mol Ther ; 27(12): 2100-2110, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31481310

RESUMEN

Lung metastasis is a common and deadly occurrence in many types of solid tumors. Chemokine receptor CXCR4 and transcription factor signal transducer and activator of transcription 3 (STAT3) are among potential therapeutic targets in lung metastatic cancer. Both CXCR4 and STAT3 play important roles in the proliferation, angiogenesis, and metastasis of cancer cells. Here, we report on the development of a pulmonary delivery (p.d.) system based on perfluorocarbon (PFC) nanoemulsions for combined delivery of a partially fluorinated polymeric CXCR4 antagonist (FM) and anti-STAT3 small interfering RNA (siRNA). We have prepared FM-stabilized PFC (FM@PFC) as a delivery system of therapeutic siRNA adsorbed on the surface of the emulsion. These FM@PFC/siRNA nanoemulsions inhibited both CXCR4 and STAT3, as demonstrated by effective anti-invasive ability in vitro and related antimetastatic activity in vivo. The combined nanoemulsions provided a comprehensive anticancer effect in the model of established lung metastasis of breast carcinoma, which was dependent on induction of cancer cell apoptosis, anti-angiogenic effect, anti-invasive activity, and overcoming of the immunosuppressive tumor microenvironment. Direct comparison with intravenous (i.v.) injection showed superior activity of pulmonary administration as indicated by significantly increased animal survival. Overall, this work established the suitability of the PFC nanoemulsions for p.d. of combination anticancer treatments and as a promising method to treat lung metastasis.


Asunto(s)
Neoplasias de la Mama/terapia , Sistemas de Liberación de Medicamentos , Neoplasias Pulmonares/terapia , Nanopartículas/administración & dosificación , ARN Interferente Pequeño/administración & dosificación , Receptores CXCR4/antagonistas & inhibidores , Factor de Transcripción STAT3/antagonistas & inhibidores , Animales , Apoptosis , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Ratones , Nanopartículas/química , Neovascularización Patológica , ARN Interferente Pequeño/genética , Factor de Transcripción STAT3/genética , Transducción de Señal , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
11.
ACS Nano ; 12(7): 6620-6636, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29985577

RESUMEN

Metastatic breast cancer is a major cause of cancer-related female mortality worldwide. The signal transducer and activator of transcription 3 (STAT3) and the chemokine receptor CXCR4 are involved in the metastatic spread of breast cancer. The goal of this study was to develop nanomedicine treatment based on combined inhibition of STAT3 and CXCR4. We synthesized a library of CXCR4-inhibiting polymers with a combination of beneficial features that included PEGylation, fluorination, and bioreducibility to achieve systemic delivery of siRNA to silence STAT3 expression in the tumors. An in vivo structure-activity relationship study in an experimental lung metastasis model revealed superior antimetastatic activity of bioreducible fluorinated polyplexes when compared with nonreducible controls despite similar CXCR4 antagonism and the ability to inhibit in vitro cancer cell invasion. When compared with nonreducible and nonfluorinated polyplexes, improved siRNA delivery was observed with the bioreducible fluorinated polyplexes. The improvement was ascribed to a combination of enhanced physical stability, decreased serum destabilization, and improved intracellular trafficking. Pharmacokinetic analysis showed that fluorination decreased the rate of renal clearance of the polyplexes and contributed to enhanced accumulation in the tumors. Therapeutic efficacy of the polyplexes with STAT3 siRNA was assessed in early stage breast cancer and late-stage metastatic breast cancer with primary tumor resection. Strong inhibition of the primary tumor growth and pronounced antimetastatic effects were observed in both models of metastatic breast cancer. Mechanistic studies revealed multifaceted mechanism of action of the combined STAT3 and CXCR4 inhibition by the developed polyplexes relying both on local and systemic effects.


Asunto(s)
Neoplasias de la Mama/terapia , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/terapia , Nanopartículas/uso terapéutico , Poliaminas/uso terapéutico , ARN Interferente Pequeño/uso terapéutico , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Halogenación , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos BALB C , Nanomedicina , Nanopartículas/química , Poliaminas/química , Polielectrolitos , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Tratamiento con ARN de Interferencia , Receptores CXCR4/antagonistas & inhibidores , Factor de Transcripción STAT3/genética
12.
Nanomedicine ; 14(6): 1765-1776, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29777878

RESUMEN

This report describes the development of polyplexes based on CXCR4-inhibiting poly(ethylenimine) derivative (PEI-C) for pulmonary delivery of siRNA to silence plasminogen activator inhibitor-1 (siPAI-1) as a new combination treatment of pulmonary fibrosis (PF). Safety and delivery efficacy of the PEI-C/siPAI-1 polyplexes was investigated in vitro in primary lung fibroblasts isolated from mice with bleomycin-induced PF. Biodistribution analysis following intratracheal administration of fluorescently labeled polyplexes showed prolonged retention in the lungs. Treatment of mice with bleomycin-induced PF using the PEI-C/siPAI-1 polyplexes resulted in a significant down-regulation of the PAI-1 expression and decreased collagen deposition in the lung. The results of this study provide first evidence of the potential benefits of combined inhibition of CXCR4 and PAI-1 in the pulmonary treatment of PF.


Asunto(s)
Sistemas de Liberación de Medicamentos , Polietileneimina/química , Polímeros/administración & dosificación , Fibrosis Pulmonar/prevención & control , ARN Interferente Pequeño/genética , Receptores CXCR4/antagonistas & inhibidores , Serpina E2/antagonistas & inhibidores , Animales , Antibióticos Antineoplásicos/toxicidad , Apoptosis , Bleomicina/toxicidad , Proliferación Celular , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patología , Silenciador del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Polímeros/química , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Receptores CXCR4/genética , Serpina E2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA