Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Mol Med Rep ; 26(4)2022 Oct.
Article En | MEDLINE | ID: mdl-35946443

Astaxanthin is a lipid­soluble carotenoid produced by various microorganisms and marine animals, including bacteria, yeast, fungi, microalgae, shrimps and lobsters. Astaxanthin has antioxidant, anti­inflammatory and anti­apoptotic properties. These characteristics suggest that astaxanthin has health benefits and protects against various diseases. Owing to its ability to cross the blood­brain barrier, astaxanthin has received attention for its protective effects against neurological disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, cerebral ischemia/reperfusion, subarachnoid hemorrhage, traumatic brain injury, spinal cord injury, cognitive impairment and neuropathic pain. Previous studies on the neurological effects of astaxanthin are mostly based on animal models and cellular experiments. Thus, the biological effects of astaxanthin on humans and its underlying mechanisms are still not fully understood. The present review summarizes the neuroprotective effects of astaxanthin, explores its mechanisms of action and draws attention to its potential clinical implications as a therapeutic agent.


Neuroprotective Agents , Xanthophylls , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Blood-Brain Barrier , Humans , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Xanthophylls/pharmacology , Xanthophylls/therapeutic use
2.
Int J Mol Sci ; 23(15)2022 Aug 05.
Article En | MEDLINE | ID: mdl-35955850

Polyvinyl alcohol (PVA) hydrogels are promising implants due to the similarity of their low-friction behavior to that of cartilage tissue, and also due to their non-cytotoxicity. However, their poor mechanical resistance and insufficient durability restricts their application in this area. With the development of biodegradable glass fibers (BGF), which show desirable mechanical performance and bioactivity for orthopedic engineering, we designed a novel PVA hydrogel composite reinforced with biodegradable glass fibers, intended for use in artificial cartilage repair with its excellent cytocompatibility and long-term mechanical stability. Using structure characterization and thermal properties analysis, we found hydrogen bonding occurred among PVA molecular networks as well as in the PVA-BGF interface, which explained the increase in crystallinity and glass transition temperature, and was the reason for the improved mechanical performance and better anti-fatigue behavior of the composites in comparison with PVA. The compressive strength and modulus for the PBGF-15 composite reached 3.05 and 3.97 MPa, respectively, equaling the mechanical properties of human articular cartilage. Moreover, the increase in BGF content was found to support the proliferation of chondrocytes in vitro, whilst the PVA hydrogel matrix was able to control the ion concentration by adjusting the ions released from the BGF. Therefore, this novel biodegradable-glass-fiber-reinforced hydrogel composite possesses excellent properties for cartilage repair with potential in medical application.


Cartilage, Articular , Hydrogels , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Proliferation , Glass , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Polyvinyl Alcohol/chemistry
3.
Nanomaterials (Basel) ; 12(3)2022 Jan 29.
Article En | MEDLINE | ID: mdl-35159825

Poly(vinylphosphonic acid) (PVPA) and polyethylenepolyamine (PEPA) are used as novel intumescent flame retardants to improve the properties of MXene (2D Ti3C2Tx)/poly(vinyl alcohol) (PVA) nanocomposites. We investigated the flame-retardant properties, thermal stability, and mechanical properties of MXene/PVA nanocomposites. The results show that MXene was homogeneously dispersed in the PVA matrix containing PVPA and PEPA. PVPA and PEPA effectively improved the flame-retardant properties of MXene/PVA nanocomposites and they did not obviously change the thermal degradation of the MXene/PVA nanocomposites. Moreover, MXene improved the thermal stability of the PVA matrix. The elongation at break of MXene/PVA nanocomposites reached its maximum when the MXene mass fraction was 1.0 wt.%, regardless of whether PVPA and PEPA were present in the PVA matrix, whereas the tensile strength and Young's modulus of MXene/PVA nanocomposites increased with the increase in MXene content in the PVA matrix.

4.
Materials (Basel) ; 14(22)2021 Nov 11.
Article En | MEDLINE | ID: mdl-34832195

The growth and reproduction of microorganisms on fabrics could not only affect the wearability of textiles but also cause harm to human health, and it is an important problem that should be solved to reduce the adsorption and growth of microorganisms on the surface of the fabric. A series of ω-vinyl betaine copolymers were synthesized by catalytic chain transfer polymerization (CCTP) and were modified by mercapto-vinyl click chemistry to synthesize silane-modified betaine copolymers, which were used to treat the cotton fabric. The hydrophilic-hydrophobic transition performance and anti-protein specific adhesion performance of cotton fabric with the betaine copolymer were systematically investigated. The copolymer was confirmed to be successfully finished on the cotton fabric via 1H-NMR and FTIR. The cotton fabric, which was treated by the betaine copolymer, presented temperature response performance in the range of 30-55 °C and had excellent anti-protein adsorption performance. The treated fabric had the best temperature-sensitive and anti-protein specific absorption performance among all the specimens when the mass fraction of G06B in DMAPS was 6 wt.%.

5.
Polymers (Basel) ; 13(5)2021 Feb 27.
Article En | MEDLINE | ID: mdl-33673492

Hybrid composites composed of bio-based thin-ply carbon fibre prepreg and flame-retardant mats (E20MI) have been produced to investigate the effects of laminate design on their fire protection performance and mechanical properties. These flame-retardant mats rely primarily on expandable graphite, mineral wool and glass fibre to generate a thermal barrier that releases incombustible gasses and protects the underlying material. A flame retardant (FR) mat is incorporated into the carbon fibre bio-based polymeric laminate and the relationship between the fire protection properties and mechanical properties is investigated. Hybrid composite laminates containing FR mats either at the exterior surfaces or embedded 2-plies deep have been tested by the limited oxygen index (LOI), vertical burning test and cone calorimetry. The addition of the surface or embedded E20MI flame retardant mats resulted in an improvement from a base line of 33.1% to 47.5% and 45.8%, respectively. All laminates passed the vertical burning test standard of FAR 25.853. Cone calorimeter data revealed an increase in the time to ignition (TTI) for the hybrid composites containing the FR mat, while the peak of heat release rate (PHRR) and total heat release (TTR) were greatly reduced. Furthermore, the maximum average rate of heat emission (MARHE) values indicated that both composites with flame retardant mats had achieved the requirements of EN 45545-2. However, the tensile strengths of laminates with surface or embedded flame-retardant mats were reduced from 1215.94 MPa to 885.92 MPa and 975.48 MPa, respectively. Similarly, the bending strength was reduced from 836.41 MPa to 767.03 MPa and 811.36 MPa, respectively.

6.
Neurocase ; 26(3): 175-182, 2020 06.
Article En | MEDLINE | ID: mdl-32310012

Panthothenate kinase-associated neurodegeneration (PKAN) is arare neurodegeneration caused by mutations in the pantothenate kinase (PANK2) gene, which is located on chromosome 20p13. These mutations result in iron accumulation in the brain basal ganglia leading to parkinsonism, dysarthria, spasticity, cognitive impairment, and retinopathy. Herein, we report acase of adult-onset PKAN who presented with young-onset action tremor, bradykinesia, dysarthria, and bilateral interossei atrophy.  Neuroimaging demonstrated "eye-of-the-tiger signs". Through analyzing PANK2 gene, PANK2 NM_153638:c.1133A>G (p.Asp378 Gly) and PANK2 NM_153638:c.1502 T > A (p.lle501Asn), were detected. In addition, we reviewed the clinical and genetic features and therapeutic strategies for patients with PKAN.


Pantothenate Kinase-Associated Neurodegeneration , Phosphotransferases (Alcohol Group Acceptor)/genetics , Adult , Humans , Male , Pantothenate Kinase-Associated Neurodegeneration/genetics , Pantothenate Kinase-Associated Neurodegeneration/pathology , Pantothenate Kinase-Associated Neurodegeneration/physiopathology , Young Adult
7.
J Mech Behav Biomed Mater ; 99: 47-55, 2019 11.
Article En | MEDLINE | ID: mdl-31344522

This work presents manufacturing, processing and characterisation of the phosphate glass fibre (PGF) products for biomedical applications, including multifilament PGF strands, yarns and textiles, and PGF textile composites. The multifilament production of PGF strands was achieved using a 50-nozzle bushing. PGF yarns, with a linear density of 87 tex, a twist angle of 14° and a tensile strength of 0.29 N/tex, were produced by combining 8 fibre strands using the ring-spinning method. PGF textiles, with a width of 15 mm and a thickness of 0.36 mm, were prepared using an inkle loom. The maximum flexural strength and modulus of unidirectional (UD) composites with a fibre volume fraction of ~17% were 262 ±â€¯11 MPa and 10.4 ±â€¯0.2 GPa, respectively. PGF textile composites with a fibre volume fraction of ~21% exhibited mechanical properties of 176 ±â€¯13 MPa for flexural strength and 8.6 ±â€¯0.6 GPa for flexural modulus. Despite the UD and textile composites having almost an equivalent amount of fibres in the 0 direction, the crimp of the yarns was found to contribute to the significantly lower flexural properties of the textile composites in comparison with the unidirectional (UD) composites. Additionally, the processing conditions such as processing temperature and time were found to have a strong effect on the mechanical properties of the resultant composite products. The number-average molecular weight of PLA was also found to reduce by 13% and 19% after the production of PLA films and PLA plates, respectively, in comparison with the as-received PLA pellets.


Biocompatible Materials/chemistry , Glass/chemistry , Phosphates/chemistry , Textiles , Absorbable Implants , Materials Testing , Microscopy, Electron, Scanning , Polyesters , Polymers , Pressure , Stress, Mechanical , Tensile Strength , Tissue Engineering/methods
8.
J Funct Biomater ; 6(3): 564-84, 2015 Jul 10.
Article En | MEDLINE | ID: mdl-26184328

Tubular scaffolds with aligned polylactic acid (PLA) fibres were fabricated for cell guide applications by immersing rolled PLA fibre mats into a polyvinyl acetate (PVAc) solution to bind the mats. The PVAc solution was also mixed with up to 30 wt % ß-tricalcium phosphate (ß-TCP) content. Cross-sectional images of the scaffold materials obtained via scanning electron microscopy (SEM) revealed the aligned fibre morphology along with a significant number of voids in between the bundles of fibres. The addition of ß-TCP into the scaffolds played an important role in increasing the void content from 17.1% to 25.3% for the 30 wt % ß-TCP loading, which was measured via micro-CT (µCT) analysis. Furthermore, µCT analyses revealed the distribution of aggregated ß-TCP particles in between the various PLA fibre layers of the scaffold. The compressive modulus properties of the scaffolds increased from 66 MPa to 83 MPa and the compressive strength properties decreased from 67 MPa to 41 MPa for the 30 wt % ß-TCP content scaffold. The scaffolds produced were observed to change into a soft and flexible form which demonstrated shape recovery properties after immersion in phosphate buffered saline (PBS) media at 37 °C for 24 h. The cytocompatibility studies (using MG-63 human osteosarcoma cell line) revealed preferential cell proliferation along the longitudinal direction of the fibres as compared to the control tissue culture plastic. The manufacturing process highlighted above reveals a simple process for inducing controlled cell alignment and varying porosity features within tubular scaffolds for potential tissue engineering applications.

...