Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Int J Antimicrob Agents ; 64(1): 107185, 2024 Jul.
Article En | MEDLINE | ID: mdl-38692492

OBJECTIVES: Using a random forest algorithm, we previously found that teicoplanin-associated gene A (tcaA) might play a role in resistance of methicillin-resistant Staphylococcus aureus (MRSA) to ß-lactams, which we have investigated further here. METHODS: Representative MRSA strains of prevalent clones were selected to identify the role of tcaA in the MRSA response to ß-lactams. tcaA genes were deleted by homologous recombination in the selected MRSA strains, and antibiotic susceptibility tests were applied to evaluate the effect of tcaA on the minimum inhibitory concentrations (MICs) of glycopeptides and ß-lactams. Scanning electron microscopy, RNA sequencing, and quantitative reverse transcription-polymerase chain reaction were performed to explore the mechanism of tcaA in MRSA resistance to ß-lactams. RESULTS: The MIC of penicillin plus clavulanate decreased from 3 mg/L to 0.064 mg/L and that of oxacillin decreased from 16 to 0.5 mg/L when tcaA was knocked out in the LAC strain. Compared with wild-type MRSA isolates, when tcaA was deleted, all selected strains were more susceptible to ß-lactams. Susceptibility to ceftobiprole was restored in the ceftobiprole-resistant strain when tcaA was deleted. tcaA knockout caused "log-like" abnormal division of MRSA, and tcaA deficiency mediated low expression of mecA, ponA, and murA2. CONCLUSIONS: Machine learning is a reliable tool for identifying drug resistance-related genes. tcaA may be involved in S. aureus cell division and may affect mecA, ponA, and murA2 expression. Furthermore, tcaA is a potential resistance breaker target for ß-lactams, including ceftobiprole, in MRSA.


Anti-Bacterial Agents , Cephalosporins , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , beta-Lactam Resistance , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Anti-Bacterial Agents/pharmacology , Cephalosporins/pharmacology , Humans , beta-Lactam Resistance/genetics , Bacterial Proteins/genetics , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , beta-Lactams/pharmacology , Gene Knockout Techniques
2.
Int J Antimicrob Agents ; 63(6): 107162, 2024 Jun.
Article En | MEDLINE | ID: mdl-38561093

OBJECTIVES: Fosfomycin has regained attention for treating infections caused by methicillin-resistant Staphylococcus aureus and multidrug-resistant coagulase-negative staphylococci. In this research, our objective was to investigate the mechanisms underlying fosfomycin resistance in Staphylococcus capitis. METHODS: The minimum inhibitory concentrations (MICs) of fosfomycin were assessed in 109 clinical S. capitis isolates by the agar dilution method. By cloning the fos-like genes into the shuttle vector, pTSSCm-Pcap, and observing the change in fosfomycin MICs, the gene function was verified. Core genome multilocus sequence typing and comparative genomics analysis were conducted to determine the population characteristics of S. capitis isolates and analyse the genetic environment of the fos-like genes. RESULTS: We identified a novel fosfomycin resistance gene, fosSC, on the chromosome in 58 out of 109 (53.2%) S. capitis isolates. The deduced products of the fosSC genes shared 67.15-67.88% amino acid sequence identity with FosB. The RN-pT-fosSC transformants carrying fosSC showed a 512-fold increase in the fosfomycin MICs. The fosSC gene was embedded in a conserved genetic context, but IS431mec was located to the left of the fosSC gene in cluster L due to the insertion of staphylococcal cassette chromosome mec. CONCLUSIONS: The chromosomal fosSC genes in some lineages of S. capitis explained their high-level fosfomycin resistance. Ongoing surveillance is crucial for monitoring the potential threat of horizontal transfer, which could be facilitated by the presence of mobile genetic elements surrounding the fosSC gene.


Anti-Bacterial Agents , Drug Resistance, Bacterial , Fosfomycin , Microbial Sensitivity Tests , Staphylococcal Infections , Staphylococcus capitis , Fosfomycin/pharmacology , Anti-Bacterial Agents/pharmacology , Humans , Staphylococcal Infections/microbiology , Staphylococcus capitis/genetics , Staphylococcus capitis/drug effects , Drug Resistance, Bacterial/genetics , Multilocus Sequence Typing , Genes, Bacterial/genetics
3.
Antimicrob Agents Chemother ; 67(11): e0056323, 2023 11 15.
Article En | MEDLINE | ID: mdl-37902403

Daptomycin (DAP) is effective against methicillin-resistant Staphylococcus aureus (MRSA). However, reduced susceptibility to DAP in MRSA may lead to treatment failures. We aim to determine the distribution of DAP minimum inhibitory concentrations (MICs) and DAP heteroresistance (hDAP) among MRSA lineages in China. A total of 472 clinical MRSA isolates collected from 2015 to 2017 in China were examined for DAP susceptibility. All isolates (n = 472) were found to be DAP susceptible, but 35.17% (166/472) of them exhibited a high DAP MIC (MIC >0.5 µg/mL). The high DAP MIC group contained a larger proportion of isolates with a higher vancomycin or teicoplanin MIC (>1.5 µg/mL) than the low DAP MIC group (19.3% vs 7.8%, P < 0.001; 22.3% vs 8.2%, P < 0.001). We compared the clonal complex (CC) distributions and clinical characteristics in MRSA isolates stratified by DAP MIC. CC5 isolates were less susceptible to DAP (MIC50 = 1 µg/mL) than CC59 isolates (MIC50 = 0.5 µg/mL, P < 0.001). Population analysis profiling revealed that 5 of 10 ST5 and ST59 DAP-susceptible MRSA isolates investigated exhibited hDAP. The results also showed that CC5 MRSA with an agrA mutation (I238K) had a higher DAP MIC than those with a wild-type agrA (P < 0.001). The agrA-I238K mutation was found to be associated with agr dysfunction as indicated by the loss of δ-hemolysin production. In addition, agr/psmα defectiveness was associated with hDAP in MRSA. Whole-genome sequencing analysis revealed mutations in mprF and walR/walK in DAP-resistant subpopulations, and most DAP-resistant subpopulations (6/8, 75%) were stable. Our study suggests that the increased DAP resistance and hDAP in MRSA may threaten the effectiveness against MRSA infections.


Daptomycin , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Daptomycin/pharmacology , Daptomycin/therapeutic use , Methicillin-Resistant Staphylococcus aureus/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Staphylococcal Infections/drug therapy , Staphylococcal Infections/epidemiology , Vancomycin/pharmacology , Microbial Sensitivity Tests
4.
J Antimicrob Chemother ; 78(8): 1871-1881, 2023 08 02.
Article En | MEDLINE | ID: mdl-37287125

BACKGROUND: The overuse of antibiotics in livestock is contributing to the burden of antimicrobial resistance in humans, representing a One Health challenge. Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) has recently become a growing concern, and ST9 is the major LA-MRSA lineage in China and has emerged in clinical settings. METHODS: Antimicrobial susceptibility testing was used to evaluate the tetracycline resistance of ST9 MRSA collections, and gene cloning experiments were performed to explore the resistance mechanisms. Whole-genome sequencing and comparative genomics were used to analyse the genetic features of clinical ST9 isolates. A phylogenetic tree was constructed to investigate the relationship of human- and livestock-derived ST9 isolates. RESULTS: Clinical ST9 isolates were found to possess several types of resistance genes and resistance-related mutations and were multidrug-resistant. Notably, all clinical ST9 isolates were resistant to third-generation tetracyclines. Cloning experiments showed that both the acquisition of the tetracycline resistance gene tet(L)/tet(63) and a mutation in the rpsJ gene contributed to third-generation tetracycline resistance. Phylogenetic analysis showed that the ST9 isolates collected in healthcare systems were probably transmitted from livestock. The ST9 lineage underwent multiple interspecies recombination events and gained many resistance elements. Furthermore, the resistance to third-generation tetracyclines may have evolved under tetracycline pressure in livestock. CONCLUSIONS: The evolution of ST9 MRSA in livestock and transmission of this clone between humans and livestock highlight the importance of establishing control strategies with the One Health approach to reduce the burden of antibiotic resistance.


Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Humans , Livestock , Tetracycline Resistance/genetics , Phylogeny , Staphylococcal Infections/epidemiology , Staphylococcal Infections/veterinary , Anti-Bacterial Agents/pharmacology , Tetracycline , China/epidemiology
5.
J Glob Antimicrob Resist ; 31: 309-315, 2022 12.
Article En | MEDLINE | ID: mdl-36265800

OBJECTIVES: Given the increasing frequency of infections due to extended-spectrum ß-lactamase (EBSL)-producing Klebsiella pneumoniae in humans over recent decades, infection control against this pathogen is of high importance. METHODS: In this study, the transmission mode of ESBL-producing K. pneumoniae in neonatal intensive care units (NICU) was investigated. We collected K. pneumoniae isolates from patients admitted to the NICU and performed environmental screening of the NICU and nearby obstetrics department. All isolates were analysed using antimicrobial susceptibility testing, whole-genome sequencing, molecular typing, and antimicrobial and virulence determinant screening. The phylogenetic relationships of all the isolates were analysed using core-genome multi-locus sequence type and single-nucleotide polymorphism-based analysis, and their plasmids harbouring antimicrobial resistance genes in ST2407 were compared. RESULTS: Eighteen K. pneumoniae isolates were collected, of which 10 isolates from patients belonged to ST45 and ST2407, and eight isolates from the environment belonged to various other clones. Although 80% and 100% of isolates from patients were ESBL-positive (blaCTX-M-14 and blaCTX-M-55) and possessed siderophores, respectively; fewer environmental isolates harboured antimicrobial resistance and virulence genes. For both ST45 and ST2407 isolates, the phylogenetic assessment revealed a close relationship between clinical and environmental isolates, indicating that bloodstream infections were associated with the contaminated environments. CONCLUSIONS: Based on these results, the environmental prevalence of K. pneumoniae should be considered given its pathogenicity in humans. Early and active infection control measures could decrease the spread of multidrug-resistant K. pneumoniae.


Intensive Care Units, Neonatal , Klebsiella Infections , Humans , Infant, Newborn , beta-Lactamases/genetics , Klebsiella Infections/epidemiology , Klebsiella Infections/transmission , Klebsiella pneumoniae , Phylogeny , Equipment Contamination
6.
Nat Commun ; 13(1): 4254, 2022 07 22.
Article En | MEDLINE | ID: mdl-35869070

Staphylococcus capitis, which causes bloodstream infections in neonatal intensive care units, is a common cause of healthcare-associated infections. Thus, a standardized high-resolution typing method to document the transmission and dissemination of multidrug-resistant S. capitis isolates is required. We aimed to establish a core genome multilocus sequence typing (cgMLST) scheme to surveil S. capitis. The cgMLST scheme was defined based on primary and validation genome sets and tested with outbreaks of linezolid-resistant isolates and a validation set. Phylogenetic analysis was performed to investigate the population structure and compare it with the result of cgMLST analysis. The S. capitis population consists of 1 dominant, NRCS-A, and 4 less common clones. In this work, a multidrug-resistant clone (L clone) with linezolid resistance is identified. With the features of type III SCCmec and multiple copies of mutations of G2576T and C2104T in the 23S rRNA, the L clone has been spreading silently across China.


Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Staphylococcus capitis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Humans , Infant, Newborn , Linezolid/pharmacology , Linezolid/therapeutic use , Methicillin-Resistant Staphylococcus aureus/genetics , Multilocus Sequence Typing/methods , Phylogeny , Staphylococcal Infections/drug therapy , Staphylococcal Infections/epidemiology , Staphylococcus capitis/genetics
7.
Clin Microbiol Infect ; 28(8): 1151.e1-1151.e7, 2022 Aug.
Article En | MEDLINE | ID: mdl-35378270

OBJECTIVES: In this study, we evaluated the ceftobiprole (BPR) susceptibilities of 472 methicillin-resistant Staphylococcus aureus (MRSA) isolates, and investigated the mechanisms underlying BPR resistance. METHODS: For all MRSA isolates, BPR MIC was determined by agar dilution. We sequenced the BPR-resistant isolates through Illumina short- and MinION long-read sequencing. We also selected MRSA isolates of ST5, ST59, and ST239, and exposed them to increasing BRP concentrations. The isolated mutants developing BPR resistance were sequenced. RESULTS: A total of 471 MRSA isolates were susceptible to BPR, with MICs ranging from 0.25 to 2 mg/L. Compared with HA-MRSA isolates (MIC50 = 2 mg/L; MIC90 = 2 mg/L), CA-MRSA isolates (MIC50 = 0.5; MIC90 = 2 mg/L) were more susceptible to BPR (p < 0.001). Compared with isolates with staphylococcal cassette chromosome mec (SCCmec) type II or III (MIC50 = 2 mg/L; MIC90 = 2 mg/L), isolates with SCCmec type IV (MIC50 = 1 mg/L; MIC90 = 1 mg/L) or V (MIC50 = 0.5 mg/L; MIC90 = 1 mg/L) were more susceptible to BPR (p < 0.001). Nanopore sequencing revealed two copies of SCCmec repeats in the BPR-resistant MRSA isolate. In addition, SCCmec amplification could be induced by BPR exposure in ST239 MRSA isolates; however, no amplification was observed in the other lineages. The induced BPR-resistant MRSA isolates also acquired mutations in mecA and other genes, such as guaA, guaB, relA, rpoA, and oatA, which were speculated as factors contributing to BPR-resistance development. DISCUSSION: BPR showed significant antibacterial activity against MRSA isolates in China; however, the emergence of a BPR-resistant isolate before its launch was a cause for concern. Multiple genes and pathways are potentially involved in the development of BPR resistance in MRSA, and our data demonstrated the role of nanopore-sequencing in revealing the tandem repeat-mediated resistance mechanism in MRSA.


Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Cephalosporins/pharmacology , Chromosomes , Humans , Microbial Sensitivity Tests , Staphylococcal Infections/microbiology
8.
Emerg Microbes Infect ; 11(1): 1166-1173, 2022 Dec.
Article En | MEDLINE | ID: mdl-35332834

Fosfomycin has gained attention as a combination therapy for methicillin-resistant Staphylococcus aureus infections. Hence, the detection of novel fosfomycin-resistance mechanisms in S. aureus is important. Here, the minimal inhibitory concentrations (MICs) of fosfomycin in CC1 methicillin-resistant S. aureus were determined. The pangenome analysis and comparative genomics were used to analyse CC1 MRSA. The gene function was confirmed by cloning the gene into pTXΔ. A phylogenetic tree was constructed to determine the clustering of the CC1 strains of S. aureus. We identified a novel gene, designated fosY, that confers fosfomycin resistance in S. aureus. The FosY protein is a putative bacillithiol transferase enzyme sharing 65.9-77.5% amino acid identity with FosB and FosD, respectively. The function of fosY in decreasing fosfomycin susceptibility was confirmed by cloning it into pTXΔ. The pTX-fosY transformant exhibited a 16-fold increase in fosfomycin MIC. The bioinformatic analysis showed that fosY is in a novel genomic island designated RIfosY (for "resistance island carrying fosY") that originated from other species. The global phylogenetic tree of ST1 MRSA displayed this fosY-positive ST1 clone, originating from different regions, in the same clade. The novel resistance gene in the fos family, fosY, and a genomic island, RIfosY, can promote cross-species gene transfer and confer resistance to CC1 MRSA causing the failure of clinical treatment. This emphasises the importance of genetic surveillance of resistance genes among MRSA isolates.


Fosfomycin , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Fosfomycin/pharmacology , Genomic Islands , Humans , Microbial Sensitivity Tests , Phylogeny , Staphylococcal Infections/epidemiology , Staphylococcus aureus
9.
Front Microbiol ; 13: 814062, 2022.
Article En | MEDLINE | ID: mdl-35295307

Objective: To determine the genetic structure of ermB-positive Tn1546-like mobile elements in methicillin-resistant Staphylococcus aureus (MRSA) from mainland China. Methods: A total of 271 erythromycin-resistant MRSA isolates were isolated from Sir Run Run Shaw Hospital (SRRSH) from 2013 to 2015. Whole-genome sequencing was performed for the ermB-positive strains, and the genetic environment of the ermB genes was analyzed. Southern hybridization analysis and transformation tests were performed to confirm the location of the ermB gene. Results: A total of 64 isolates (64/271, 23.6%) were ermB-positive strains, with 62 strains (62/64, 96.9%) belonging to the CC59 clone. The other two strains, SR130 and SR231, belonging to CC5-ST965, both harbored 14,567 bp ermB-positive Tn1546-like elements and displayed multidrug-resistant profiles. PFGE followed by Southern blot demonstrated that the ermB genes were located on the plasmids of both SR130 and SR231, while two copies of ermB were located on the chromosome of SR231. Further sequencing demonstrated that SR231 carried one Tn1546-ermB elements in the plasmid and two identical copies integrated on the chromosome, which had 99.99% identity to the element in the plasmid of SR130. The Tn1546-ermB elements were highly similar (100% coverage, >99.9% identity) to the element Tn6636 reported in a previous study from Taiwan. The plasmids (pSR130 and pSR231) harboring ermB-positive Tn1546-like elements were also identical to the mosaic plasmid pNTUH_5066148. However, conjugation of ermB-carrying plasmids of SR130 and SR231 were failed after triple repeats. Conclusion: Multiple copies of ermB-positive Tn1546-like mobile elements were found in CC5-ST965 MRSA from mainland China, showing the wide dissemination of these Enterococcus faecium-originated ermB-positive Tn1546-like elements. Molecular epidemiological study of Tn1546-like elements is essential to avoid the spreading of resistant determinants.

10.
Clin Microbiol Infect ; 28(1): 85-92, 2022 Jan.
Article En | MEDLINE | ID: mdl-34022399

OBJECTIVES: The aim of this study was to investigate the genomic epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) in China to identify predominant lineages and their associations with clinical data and antimicrobial resistance profiles. METHODS: We performed a national prevalence study of patients with S. aureus infections in 22 tertiary hospitals in China from 2015 to 2017. Clinical data from patients and the antimicrobial phenotypes were collected for each isolate. Genome sequencing was performed on a proportion of isolates and a phylogenetic analysis was undertaken. Genotypic and phenotypic ß-lactam susceptibilities were compared. RESULTS: A total of 1900 patients with S. aureus infections were included, of which 40% involved MRSA. Community-associated MRSA (CA-MRSA) infections were 24% of the total isolates. Genomic data showed that more than three-quarters of the MRSA were from three dominant lineages CC239 (25%, 116/471), CC5 (21%, 96/471) and CC59 (33%, 154/471) with CC59 accounting for more than half of the CA-MRSA isolates. Penicillin susceptibility genomic features were observed in 53% (251/470) of MRSA, including almost all of the CC59 (152/154) lineage, and 96% (242/251) of these isolates demonstrated in vitro susceptibility to penicillin or amoxicillin combined with clavulanic acid. Phylogenetic analysis indicated that the CC59 lineage can be divided into six lineages with all Asian CC59 isolates likely arising from an ancestral Mainland China lineage. CONCLUSIONS: This study showed a high prevalence of CA-MRSA in China, largely due to the widespread presence of CC59. As almost all isolates in this lineage possess genetic variants leading to increased ß-lactam susceptibility, we suggest that to improve antibiotic stewardship combinations of penicillins and ß-lactamase inhibitors should be included in the antibiotic susceptibility testing panels used to inform treatment decisions and research undertaken on this combination therapy.


Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Anti-Bacterial Agents/therapeutic use , China/epidemiology , Evolution, Molecular , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests , Penicillins , Phylogeny , Staphylococcal Infections/drug therapy , Staphylococcal Infections/epidemiology , Staphylococcus aureus
11.
Antimicrob Agents Chemother ; 66(1): e0129521, 2022 01 18.
Article En | MEDLINE | ID: mdl-34662187

The emergence of daptomycin-resistant (DAP-R) Staphylococcus aureus strains has become a global problem. Point mutations in mprF are the main cause of daptomycin (DAP) treatment failure. However, the impact of these specific point mutations in methicillin-resistant S. aureus (MRSA) strains associated with DAP resistance and the "seesaw effect" of distinct beta-lactams remains unclear. In this study, we used three series of clinical MRSA strains with three distinct mutated mprF alleles from clone complexes (CC) 5 and 59 to explore the seesaw effect and the combined effect of DAP plus beta-lactams. Through construction of mprF deletion and complementation strains of SA268, we determined that mprF-S295A, mprF-S337L, and one novel mutation of mprF-I348del within the bifunctional domain lead to DAP resistance. Compared with wild-type mprF cloned from a DAP-susceptible (DAP-S) strain, these three mprF mutations conferred the seesaw effect to distinct beta-lactams in the SA268ΔmprF strains, and mutated mprF (I348del and S337L) did not alter the cell surface positive charge (P > 0.05). The susceptibility to beta-lactams increased significantly in DAP-R CC59 strains, and the seesaw effect was found to be associated with distinct mutated mprF alleles and the category of beta-lactams. The synergistic activity of DAP plus oxacillin was detected in all DAP-R MRSA strains. Continued progress in understanding the mechanism of restoring susceptibility to beta-lactam antibiotics mediated by the mprF mutation and its impact on beta-lactam combination therapy will provide fundamental insights into treatment of MRSA infections.


Aminoacyltransferases , Bacterial Proteins , Daptomycin , Methicillin-Resistant Staphylococcus aureus , Aminoacyltransferases/genetics , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Daptomycin/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests , Mutation
12.
Front Public Health ; 10: 1053785, 2022.
Article En | MEDLINE | ID: mdl-36699930

Background: Surgical sites infections (SSIs) caused by Methicillin-resistant Staphylococcus aureus (MRSA) constitute a major clinical problem. Understanding the transmission mode of MRSA is important for its prevention and control. Aim: We investigated the transmission mode of a MRSA outbreak in a trauma and orthopedic hospital ward. Methods: Clinical data were collected from patients (n = 9) with MRSA infection in a trauma and orthopedic ward from January 1, 2015 to December 31, 2019. The wards (n = 18), patients (n = 48), medical staff (n = 23), and their households (n = 5) were screened for MRSA. The transmission mode of MRSA isolates was investigated using next-generation sequencing and phylogenetic analyses. The resistance genes, plasmids, and single-nucleotide variants of the isolates were analyzed to evaluate microevolution of MRSA isolates causing SSIs. The MRSA colonization-positive doctor was asked to suspend his medical activities to stop MRSA spread. Findings: Nine MRSA infected patients were investigated, of which three patients were diagnosed with SSI and had prolonged hospitalization due to the persistent MRSA infection. After screening, MRSA isolates were not detected in environmental samples. The surgeon in charge of the patients with SSI caused by MRSA and his son were positive for MRSA colonization. The MRSA from the son was closely related to the isolates detected in MRSA-induced SSIs patients with 8-9 single-nucleotide variants, while ST88-MRSA isolates with three different spa types were detected in the surgeon's nasal cavity. Comparative genomic analysis showed that ST88-MRSA isolates acquired mutations in genes related to cell wall synthesis, colonization, metabolism, and virulence during their transmission. Suspending the medical activity of this surgeon interrupted the spread of MRSA infection in this ward. Conclusion: Community-associated MRSA clones can invade hospitals and cause severe postoperative nosocomial infections. Further MRSA surveillance in the households of health workers may prevent the transition of MRSA from colonization to infection.


Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcal Infections/epidemiology , Phylogeny , Hospitals , Health Personnel , Nucleotides
13.
Microb Genom ; 7(9)2021 09.
Article En | MEDLINE | ID: mdl-34554083

Treatment failure of methicillin-resistant Staphylococcus aureus (MRSA) infections remains problematic in clinical practice because therapeutic options are limited. Penicillin plus potassium clavulanate combination (PENC) was shown to have potential for treating some MRSA infections. We investigated the susceptibility of MRSA isolates and constructed a drug susceptibility prediction model for the phenotype of the PENC. We determined the minimum inhibitory concentration of PENC for MRSA (n=284) in a teaching hospital (SRRSH-MRSA). PENC susceptibility genotypes were analysed using a published genotyping scheme based on the mecA sequence. mecA expression in MRSA isolates was analysed by qPCR. We established a random forest model for predicting PENC-susceptible phenotypes using core genome allelic profiles from cgMLST analysis. We identified S2-R isolates with susceptible mecA genotypes but PENC-resistant phenotypes; these isolates expressed mecA at higher levels than did S2 MRSA (2.61 vs 0.98, P<0.05), indicating the limitation of using a single factor for predicting drug susceptibility. Using the data of selected UK-sourced MRSA (n=74) and MRSA collected in a previous national survey (NA-MRSA, n=471) as a training set, we built a model with accuracies of 0.94 and 0.93 for SRRSH-MRSA and UK-sourced MRSA (n=287, NAM-MRSA) validation sets. The AUROC of this model for SRRSH-MRSA and NAM-MRSA was 0.96 and 0.97. Although the source of the training set data affects the scope of application of the prediction model, our data demonstrated the power of the machine learning approach in predicting susceptibility from cgMLST results.


Clavulanic Acid/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Penicillins/pharmacology , Algorithms , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , DNA, Bacterial/genetics , Genotype , Machine Learning , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Microbial Sensitivity Tests , Penicillin-Binding Proteins/genetics , Staphylococcus aureus/genetics
14.
Front Public Health ; 9: 658638, 2021.
Article En | MEDLINE | ID: mdl-34136453

Currently, the mechanism of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) transmission mechanism is unclear; however, it must be considered in conjunction with asymptomatic S. aureus strains colonization dynamics. This epidemiological study aimed to determine the role of the household in CA-MRSA transmission in China. Five patients with culture-confirmed CA-MRSA infection and five control patients were recruited from the Sir Run Run Shaw Hospital in Zhejiang, China, between December 2019 and January 2020. The household members of the patients, their pets, and environmental surfaces were sampled and screened for MRSA colonization. Mass spectrometry identification and antimicrobial susceptibility testing were performed on the MRSA isolates. Whole-genome sequencing and core genome multilocus sequence typing (cgMLST) were performed to determine the origin and transmission of the MRSA isolates in the households. Overall, 14 S. aureus-positive specimens (14.1%, 14/99) were obtained from the five households of patients with CA-MRSA infections, of which 12 (85.7%) were MRSA. The overall positivity of MRSA was 12.1% (12/99) among the samples from the CA-MRSA households, while no MRSA isolates were detected in the five control households. Most MRSA isolates belonged to epidemic CA-MRSA clones, such as ST59 (15/35, 42.9%) and ST508 (15/35, 42.9%). The cgMLST results confirmed that MRSA was transmitted among patients, contacts, and pets in the households and was present on environmental surfaces in the CA-MRSA patients' households. In conclusion, the study revealed that the home environment was an important MRSA reservoir. Therefore, focusing on MRSA decolonization in patients alone is not sufficient for infection control of CA-MRSA.


Community-Acquired Infections , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , China/epidemiology , Community-Acquired Infections/drug therapy , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Staphylococcal Infections/drug therapy , Staphylococcus aureus
15.
J Infect Chemother ; 26(7): 699-705, 2020 Jul.
Article En | MEDLINE | ID: mdl-32245640

PURPOSE: To determine the genetic characteristics of the Chinese epidemic ST5-SCCmec II-t311 methicillin-resistant Staphylococcus aureus (MRSA) clone and to investigate the transmission characteristics of the cfr-positive plasmid. METHODS: The complete genome of SR153 was sequenced. Genomic comparison with MRSA strains of other lineages was performed. The cfr-positive plasmid was investigated and compared with other cfr-positive plasmids from different origins and different areas. RESULTS: The cfr-positive MRSA strain SR153 was a Chinese epidemic ST5-SCCmec II-t311 strain. It clustered much closer to the Japanese ST5-SCCmec II clone than to the European and American ST5-SCCmec II clones. The genome of SR153 contains one circular chromosome and three plasmids. It harbors the genomic islands νSaα, νSaß, νSaγ, ΦSa1 and ΦSa3, the pathogenicity island νSa4, and genes encoding virulence factors such as tst and many enterotoxins. The SR153 genome also contains several resistance genes and mutations, such as ermA, aadD, spc, aacA-aphD, lnuA, tetK, blaZ and mutations in grlA and gyrA. SR153 harbors a cfr-positive plasmid, pSR01, which is highly similar to pSX01 from a Staphylococcus xylosus of pig origin from Henan Province. pSR01 was also highly similar to pXWZ from a Staphylococcus capitis and pLRSA417 from S. aureus. Both were obtained from geographically separated hospitals in Zhejiang Province. CONCLUSIONS: SR153, which clustered closely to the Japanese ST5-SCCmec II clone, is more resistant than N315. A pSR01-like cfr-positive plasmid was widespread among different Staphylococcus species of both human and animal origin in different hospitals and areas.


Anti-Bacterial Agents/pharmacology , Methicillin Resistance/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Plasmids/genetics , Staphylococcal Infections/drug therapy , Animals , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , China/epidemiology , Gene Transfer, Horizontal , Genetic Variation , Genome, Bacterial/genetics , Genomic Islands/genetics , Humans , Methicillin/pharmacology , Methicillin/therapeutic use , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Mutation , Plasmids/isolation & purification , Staphylococcal Infections/epidemiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Staphylococcus/genetics , Staphylococcus/isolation & purification , Staphylococcus/pathogenicity , Swine/microbiology , Virulence Factors/genetics
...