Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2401561, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38949414

RESUMEN

Digital light processing (DLP) is a 3D printing technology offering high resolution and speed. Printable materials are commonly based on multifunctional monomers, resulting in the formation of thermosets that usually cannot be reprocessed or recycled. Some efforts are made in DLP 3D printing of thermoplastic materials. However, these materials exhibit limited and poor mechanical properties. Here, a new strategy is presented for DLP 3D printing of thermoplastics based on a sequential construction of two linear polymers with contrasting (stiff and flexible) mechanical properties. The inks consist of two vinyl monomers, which lead to the stiff linear polymer, and α-lipoic acid, which forms the flexible linear polymer via thermal ring-opening polymerization in a second step. By varying the ratio of stiff and flexible linear polymers, the mechanical properties can be tuned with Young's modulus ranging from 1.1 GPa to 0.7 MPa, while the strain at break increased from 4% to 574%. Furthermore, these printed thermoplastics allow for a variety of reprocessability pathways including self-healing, solvent casting, reprinting, and closed-loop recycling of the flexible polymer, contributing to the development of a sustainable materials economy. Last, the potential of the new material in applications ranging from soft robotics to electronics is demonstrated.

2.
Adv Sci (Weinh) ; 10(35): e2304147, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37844996

RESUMEN

Most plastics originate from limited petroleum reserves and cannot be effectively recycled at the end of their life cycle, making them a significant threat to the environment and human health. Closed-loop chemical recycling, by depolymerizing plastics into monomers that can be repolymerized, offers a promising solution for recycling otherwise wasted plastics. However, most current chemically recyclable polymers may only be prepared at the gram scale, and their depolymerization typically requires harsh conditions and high energy consumption. Herein, it reports less petroleum-dependent closed-loop recyclable silica-based nanocomposites that can be prepared on a large scale and have a fully reversible polymerization/depolymerization capability at room temperature, based on catalysis of free aminopropyl groups with the assistance of diethylamine or ethylenediamine. The nanocomposites show glass-like hardness yet plastic-like light weight and toughness, exhibiting the highest specific mechanical strength superior even to common materials such as poly(methyl methacrylate), glass, and ZrO2 ceramic, as well as demonstrating multifunctionality such as anti-fouling, low thermal conductivity, and flame retardancy. Meanwhile, these nanocomposites can be easily processed by various plastic-like scalable manufacturing methods, such as compression molding and 3D printing. These nanocomposites are expected to provide an alternative to petroleum-based plastics and contribute to a closed-loop materials economy.

3.
Adv Mater ; 35(7): e2209004, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36478473

RESUMEN

The detection of ultratrace analytes is highly desirable for the non-invasive monitoring of human diseases. However, a major challenge is fast, naked-eye, high-resolution ultratrace detection. Herein, a rectangular 3D composite photonic crystal (PC)-based optoelectronic device is first designed that combines the sensitivity-enhancing effects of PCs and optoelectronic devices with fast and real-time digital monitoring. A crack-free, centimeter-scale, mechanically robust ellipsoidal composite PCs with sufficient hardness and modulus, even exceeding most plastics and aluminum alloys, are developed. The high mechanical strength of ellipsoidal composite PCs allows them to be hand-machined into rectangular geometries that can be conformally covered with the centimeter-scale flat light-detection area without interference from ambient light, easily integrating 3D composite PC-based optoelectronic devices. The PC-based device's signal-to-noise ratio increases dramatically from original 30-40 to ≈60-70 dB. Droplets of ultratrace analytes on the device are identified by fast digital readout within seconds, with detection limits down to 5 µL, enabling rapid identification of ultratrace glucose in artificial sweat and diabetes risk. The developed 3D PC-based sensor offers the advantages of small size, low cost, and high reliability, paving the way for wider implementation in other portable optoelectronic devices.

4.
Soft Matter ; 18(39): 7464-7485, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36189642

RESUMEN

Miniature soft robots with elaborate structures and programmable physical properties could conduct micromanipulation with high precision as well as access confined and tortuous spaces, which promise benefits in medical tasks and environmental monitoring. To improve the functionalities and adaptability of miniature soft robots, a variety of integrated design and fabrication strategies have been proposed for the development of miniaturized soft robotic systems integrated with multicomponents and multifunctionalities. Combining the latest advancement in fabrication technologies, intelligent materials and active control methods enable these integrated robotic systems to adapt to increasingly complex application scenarios including precision medicine, intelligent electronics, and environmental and proprioceptive sensing. Herein, this review delivers an overview of various integration strategies applicable for miniature soft robotic systems, including semiconductor and microelectronic techniques, modular assembly based on self-healing and welding, modular assembly based on bonding agents, laser machining techniques, template assisted methods with modular material design, and 3D printing techniques. Emerging applications of the integrated miniature soft robots and perspectives for the future design of small-scale intelligent robots are discussed.


Asunto(s)
Robótica , Materiales Inteligentes , Electrónica , Impresión Tridimensional , Robótica/métodos
5.
Nat Commun ; 13(1): 1877, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35387994

RESUMEN

Electrochemical reduction of CO2 to multi-carbon fuels and chemical feedstocks is an appealing approach to mitigate excessive CO2 emissions. However, the reported catalysts always show either a low Faradaic efficiency of the C2+ product or poor long-term stability. Herein, we report a facile and scalable anodic corrosion method to synthesize oxygen-rich ultrathin CuO nanoplate arrays, which form Cu/Cu2O heterogeneous interfaces through self-evolution during electrocatalysis. The catalyst exhibits a high C2H4 Faradaic efficiency of 84.5%, stable electrolysis for ~55 h in a flow cell using a neutral KCl electrolyte, and a full-cell ethylene energy efficiency of 27.6% at 200 mA cm-2 in a membrane electrode assembly electrolyzer. Mechanism analyses reveal that the stable nanostructures, stable Cu/Cu2O interfaces, and enhanced adsorption of the *OCCOH intermediate preserve selective and prolonged C2H4 production. The robust and scalable produced catalyst coupled with mild electrolytic conditions facilitates the practical application of electrochemical CO2 reduction.

6.
Macromol Rapid Commun ; 43(9): e2200053, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35132728

RESUMEN

Digital light processing (DLP) 3D printing is advantageous in high printing efficiency and printing resolution for fabricating complex structures across various applications. However, the layer-by-layer curing manner of DLP leads to weak interlayer adhesion and the anisotropic mechanical properties of printed objects. Here, linear polymers are introduced into commercial resins to weld the interlayer by the diffusion and entanglement of linear polymers after DLP printing via heat treatment. This introduction of linear polymers not only shows a strengthening and toughening effect on the printed objects, but also has no negative impact on the DLP printability. The tensile strengths of objects containing 4.7 wt% polycaprolactone can reach up to ≈500% of that of neat samples in any printing direction. This simple strategy by adding linear polymers into printing resins provides an effective access to prepare DLP printed objects with improved mechanical properties as well as ensure printing resolution and printing efficiency.

7.
J Am Chem Soc ; 144(1): 436-445, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34965113

RESUMEN

A coating with programmable multifunctionality based on application requirements is desirable. However, it is still a challenge to prepare a hard and flexible coating with a quick self-healing ability. Here, a hard but reversible Si-O-Si network enabled by aminopropyl-functionalized poly(silsesquioxane) and triethylamine (TEA) was developed. On the basis of this Si-O-Si network, basic coatings with excellent transparency, hardness, flexibility, and quick self-healing properties can be prepared by filling soft polymeric micelles into hard poly(silsesquioxane) networks. The highly cross-linked continuous network endows the coating with a hardness (H = 0.83 GPa) higher than those of most polymers (H < 0.3 GPa), while the uniformly dispersed micelles decrease the Young's modulus (E = 5.89 GPa) to a value as low as that of common plastics, resulting in excellent hardness and flexibility, with an H/E of 14.1% and an elastic recovery rate (We) of 86.3%. Scratches (∼50 µm) on the coating can be healed within 4 min. The hybrid composition of poly(silsesquioxane) networks also shows great advantages in integration with other functional components to realize programmable multifunctionality without diminishing the basic properties. This nanocomposite design provides a route toward the preparation of materials with excellent comprehensive functions without trade-offs between these properties.

8.
ACS Appl Mater Interfaces ; 13(29): 34954-34961, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34270889

RESUMEN

Three-dimensional (3D) printing is becoming a revolutionary technique across various fields. Especially, digital light processing (DLP) 3D printing shows advantages of high resolution and high efficiency. However, multifunctional monomers are commonly used to meet the rapid liquid-to-solid transformation during DLP printing, and the extensive production of unreprocessable thermosets will lead to resource waste and environmental problems. Here, we report a family of dynamic polymers with highly tailorable mechanical properties for DLP printing. The dynamic polymers cross-linked by ionic bonding and hydrogen bonding endow printed objects with excellent self-healing and recycling ability. The mechanical properties of printed objects can be easily tailored from soft elastomers to rigid plastics to satisfy practical applications. Taking advantage of the dynamic cross-linking, various assembling categories, including 2D to 3D, small to large 3D structures, and same to different materials assembly, and functional devices with a self-healing capacity can be realized. This study not only helps to address environmental issues caused by traditional DLP-printed thermosets but also realizes the on-demand fabrication of complex structures.

9.
Polymers (Basel) ; 10(7)2018 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-30960641

RESUMEN

In this work, a different polymer chain structure was synthesized to study π-π interactions between polymer and reduced graphene oxide (RGO). Polymers with different chain structures were obtained from free radical copolymerization of styrene with 4-cyanostyrene (containing substituted phenyl rings) and 2-vinylnaphthalene (containing naphthalene rings). In this work, the polystyrene, poly(styrene-co-4-cyanostyrene) and poly(styrene-co-2-vinylnaphthalene) were named as PS, PSCN and PSNP, respectively. RGO was prepared through modified Hummers' method and further thermal reduction, and nanocomposites were prepared by solution blending. Thus, different π-π interactions were formed between polymers and RGO. Raman and thermal gravimetric analysis (TGA) were used to characterize the interfacial interaction, showing that the trend of the interfacial interaction should be in the order of RGO/PSCN, RGO/PS, and RGO/PSNP. The differential scanning calorimetry (DSC) measurement showed that, compared with polymer matrix, the glass transition temperature (Tg) of RGO/PS, RGO/PSCN and RGO/PSNP nanocomposites with the addition of 4.0 wt% RGO are increased by 14.3 °C, 25.2 °C and 4.4 °C, respectively. Compared with π-π interaction only formed through aromatic rings, substituent groups changed the densities of electron clouds on the phenyl rings. This change resulted in the formation of donor-acceptor interaction and reinforcement of the π-π interaction at the interface, which leads to increased value of Tg. This comparative study can be useful for selecting appropriate interaction groups, as well as suitable monomers, to prepare high performance nanocomposites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...