Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 117
1.
Epilepsia Open ; 2024 May 29.
Article En | MEDLINE | ID: mdl-38808742

OBJECTIVES: Epilepsy and migraine are common chronic neurological disease. Epidemiologic studies and shared pathophysiology and treatment suggest that these two diseases overlap. However, migraine is often underestimated among patients with epilepsy. This study aimed to evaluate the prevalence of migraine and identify the related influencing factors among adult patients with epilepsy. METHODS: Adult patients with epilepsy were recruited at the outpatient epilepsy clinic of 13 tertiary hospitals in China from February to September 2022. ID Migraine questionnaire was applied to evaluate for migraine. Both univariable and multivariable logistic regression models were used to explore the influencing factors of migraine. RESULTS: A total of 1326 patients with epilepsy were enrolled in this study. The prevalence of migraine among patients with epilepsy was 19.2% (254/1326). In the multivariable analysis, being female (OR = 1.451, 95% CI: 1.068-1.975; p = 0.018), focal and focal to bilateral tonic-clonic seizures (OR = 1.583, 95% CI: 1.090-2.281; p = 0.015), and current seizure attack in the last 3 months (OR = 1.967, 95% CI: 1.282-3.063; p = 0.002) were the influencing factors for migraine. However, <10% of patients with epilepsy received analgesics for migraine. SIGNIFICANCE: Approximately 20% of patients with epilepsy screened positive for migraine. Being female, focal and focal to bilateral tonic-clonic seizures, and current seizure attack in the last 3 months were the influencing factors for migraine. Neurologists should pay more attention to the screening and management of the migraine among patients with epilepsy in China. PLAIN LANGUAGE SUMMARY: Epilepsy and migraine are common chronic neurological disease with shared pathophysiological mechanisms and therapeutic options. However, migraine is often underestimated among patients with epilepsy. This multicenter study aimed to evaluate the prevalence of migraine and current status of treatment. In this study, approximately 20% of patients with epilepsy screened positive for migraine. Female, focal and focal to bilateral tonic-clonic seizures, and current seizure attack in the last 3 months were identified as independent influencing factors for migraine. Despite the high prevalence, the treatment for migraine was not optimistic, neurologists should pay more attention to the screening and management of migraine.

2.
Inorg Chem ; 63(19): 8977-8987, 2024 May 13.
Article En | MEDLINE | ID: mdl-38690714

Integration of hydrogen evolution with the oxidation of organic substances in one electrochemical system is highly desirable. However, achieving selective oxidation of organic substances in the integrated system is still highly challenging. In this study, a phosphorylated NiMoO4 nanoneedle-like array was designed as the catalytic active electrode for the integration of highly selective electrochemical dehydrogenation of tetrahydroisoquinolines (THIQs) with hydrogen production. The leaching of anions, including MoO42- and PO43-, facilitates the reconstruction of the catalyst. As a result, nickel oxyhydroxides with the doping of PO43- and richness of defects are in situ formed. In situ Raman and density functional theory calculations have shown that the high catalytic activity is attributed to the in situ formed PO43- involved NiOOH substance. In the dehydrogenation process, the involved C-H bond but not the N-H bond is first destroyed. A two-electrode system was then fabricated with the optimized electrode that shows a benchmark current density of 10 mA cm-2 at 1.783 V, providing a yield of 70% for dihydroisoquinolines. A robust stability was also shown for this integrated electrochemical system. The understanding of the reconstruction behavior and the achievement of selective dehydrogenation will provide some hints for electrochemical synthesis.

3.
Int J Neurosci ; : 1-8, 2024 May 07.
Article En | MEDLINE | ID: mdl-38695689

OBJECTIVE: In order to provide a more accurate and effective basis for clinical diagnosis and treatment, patients with cognitive dysfunction after acute ischemic stroke (AIS) were evaluated and their influencing factors were analyzed. METHODS: A rigorous and systematic logistic regression analysis was conducted to comprehensively investigate the various influencing factors that contribute to cognitive dysfunction. RESULTS: Among them, the sex granulocyte/lymphocyte ratio (NLR), low-density lipoprotein cholesterol (LDL-C) level, and C-reactive protein (CRP) were also higher than those in the control group (p < 0.05). The scores of memory, orientation, visual and spatial function, abstract thinking and language in the control group were higher than those in the experimental group (p < 0.05). The results of multivariate logistic regression analysis showed that history of diabetes mellitus, high NLR, high LDL-C, high CRP, smoking and temporal lobe infarction were risk factors for cognitive dysfunction after AIS, while elevated BMI and love of exercise were protective factors for cognitive dysfunction after AIS. CONCLUSION: Patients with cognitive dysfunction had the highest incidence of temporal lobe infarction, and they scored lower than the control group on memory, orientation, visual and spatial function, abstract thinking, and language function. Multivariate logistic regression analysis showed that a history of diabetes mellitus, high NLR, high LDL-C, high CRP, smoking, and temporal lobe infarction were independent risk factors for cognitive dysfunction after acute ischemic stroke, while elevated BMI and a love of exercise were protective factors for cognitive dysfunction after acute ischemic stroke.

4.
Front Neurol ; 15: 1364295, 2024.
Article En | MEDLINE | ID: mdl-38487333

Background: There is currently a lack of studies examining the long-term therapeutic effectiveness of the third-generation anti-sezure medication, perampanel (PER), for focal-onset seizures (FOS), particularly in Chinese patients with sleep-related epilepsy (SRE). Additionally, the appropriate dosage, plasma concentration, and the relationship between dose and plasma concentration of PER in Chinese patients are still uncertain. Methods: A prospective, single-center, 24-month observational study was conducted in patients diagnosed with FOS, with a focus on patients with SRE. Changes in seizure frequency from baseline, adverse events, and retention rates were analyzed at 12 and 24 months following the start of the treatment. Tolerability was evaluated based on adverse events and discontinuation profiles. PER plasma concentrations were used to assess dose-concentration-response relationships. Results: A total of 175 patients were included (median age: 25 years; range: 4-72 years; 53. 1% males and 46.9% females), with the SRE population accounting for 49. 1% (n = 86). The patients diagnosed with SRE showed considerably higher response rates than those who did not have this diagnosis (p = 0.025, odds ratio = 3.8). Additionally, the SRE group adhered better to PER treatment (r = 0.0009). Patients with a shorter duration of epilepsy (median: 3 years; range:2-7 years) demonstrated a more favorable therapeutic response to PER (p = 0.032). Throughout the administration of maintenance doses, among the entire FOS population, the concentration of PER (C0) ranged between 101.5 and 917.4 ng/mL (median, 232.0 ng/mL), and the mean plasma concentration of PER in the responders was 292.8 ng/mL. We revealed a linear relationship between PER dose and plasma concentration, regardless of whether PER was used as monotherapy or add-on therapy. The retention rates were 77.7% and 65. 1% at 12 and 24 months, respectively. Drug-related adverse events occurred in 45.0% of the patients and were mostly manageable. Conclusion: PER effectively reduced seizure frequency in Chinese patients with FOS, particularly in those with SRE, over a 24-month period. The treatment was well-tolerated and had a clear linear dose-plasma concentration relationship.

5.
mBio ; 15(4): e0026324, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38407058

Azoles are the primary antifungal drugs used to treat infections caused by Aspergillus fumigatus. However, the emergence of azole resistance in A. fumigatus has become a global health concern despite the low proportion of resistant isolates in natural populations. In bacteria, antibiotic resistance incurs a fitness cost that renders strains less competitive in the absence of antibiotics. Consequently, fitness cost is a key determinant of the spread of resistant mutations. However, the cost of azole resistance and its underlying causes in A. fumigatus remain poorly understood. In this observation, we revealed that the 10 out of 15 screened azole-resistant isolates, which possessed the most common azole-targeted cyp51A mutations, particularly the presence of tandem repeats in the promoter region, exhibit fitness cost when competing with the susceptible isolates in azole-free environments. These results suggest that fitness cost may significantly influence the dynamics of azole resistance, which ultimately contributes to the low prevalence of azole-resistant A. fumigatus isolates in the environment and clinic. By constructing in situ cyp51A mutations in a parental azole-susceptible strain and reintroducing the wild-type cyp51A gene into the azole-resistant strains, we demonstrated that fitness cost is not directly dependent on cyp51A mutations but is instead associated with the evolution of variable mutations related to conidial germination or other unknown development-related processes. Importantly, our observations unexpectedly revealed that some azole-resistant isolates showed no detectable fitness cost, and some even exhibited significantly increased competitive fitness in azole-free environments, highlighting the potential risk associated with the prevalence of these isolates. IMPORTANCE: Azole resistance in the human fungal pathogen Aspergillus fumigatus presents a global public health challenge. Understanding the epidemic trends and evolutionary patterns of azole resistance is critical to prevent and control the spread of azole-resistant isolates. The primary cause is the mutation of the drug target 14α-sterol-demethylase Cyp51A, yet its impact on competitive ability remains uncertain. Our competition assays revealed a diverse range of fitness outcomes for environmental and clinical cyp51A-mutated isolates. We have shown that this fitness cost is not reliant on cyp51A mutations but might be linked to unknown mutations induced by stress conditions. Among these isolates, the majority displayed fitness costs, while a few displayed enhanced competitive ability, which may have a potential risk of spread and the need to closely monitor these isolates. Our observation reveals the variation in fitness costs among azole-resistant isolates of A. fumigatus, highlighting the significant role of fitness cost in the spread of resistant strains.


Aspergillus fumigatus , Azoles , Humans , Azoles/pharmacology , Fungal Proteins/genetics , Antifungal Agents/pharmacology , Mutation , Drug Resistance, Fungal/genetics , Microbial Sensitivity Tests
6.
Article En | MEDLINE | ID: mdl-38197783

A Gram-positive, acid-fast, aerobic, rapidly growing and non-motile strain was isolated from lead-zinc mine tailing sampled in Lanping, Yunnan province, Southwest China. 16S rRNA gene sequence analysis showed that the most closely related species of strain KC 300T was Mycolicibacterium litorale CGMCC 4.5724T (98.47 %). Additionally, phylogenomic and specific conserved signature indel analysis revealed that strain KC 300T should be a member of genus Mycolicibacterium, and Mycobacterium palauense CECT 8779T and Mycobacterium grossiae DSM 104744T should also members of genus Mycolicibacterium. The genome size of strain KC 300T was 6.2 Mb with an in silico DNA G+C content of 69.2 mol%. Chemotaxonomic characteristics of strain KC 300T were also consistent with the genus Mycolicibacterium. The average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity values, as well as phenotypic, physiological and biochemical characteristics, support that strain KC 300T represents a new species within the genus Mycolicibacterium, for which the name Mycolicibacterium arseniciresistens sp. nov. is proposed, with the type strain KC 300T (=CGMCC 1.19494T=JCM 35915T). In addition, we reclassified Mycobacterium palauense and Mycobacterium grossiae as Mycolicibacterium palauense comb. nov. and Mycolicibacterium grossiae comb. nov., respectively.


Mycobacterium , Zinc , RNA, Ribosomal, 16S/genetics , Base Composition , China , Phylogeny , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Fatty Acids/chemistry , Mycobacterium/genetics
7.
Dalton Trans ; 53(6): 2762-2769, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38226665

The hydrogen oxidation reaction is an important process in anion exchange membrane fuel cells with alkaline solutions. The pursuit of efficient catalysts for alkaline hydrogen oxidation has attracted considerable attention. In this study, we present a precursor route for the synthesis of a new Ir-based catalyst (Ir-Ni/NiO/C), in which Ir nanoclusters were immobilized on the generated Ni/NiO/C support derived from a metal-organic framework. The small size of Ir clusters facilitates the exposure of catalytically active sites. The electronic interplay between the Ir nanoclusters and the Ni/NiO/C support optimized the hydrogen binding energy (HBE) and hydroxide binding energy (OHBE) on the surface, which is unattainable on the contrasting Ir-C, Ir-Ni/C, and Ir-NiO/C products. The optimized catalyst shows excellent mass activity for alkaline hydrogen oxidation, which is 3.1 times that of the Pt/C catalyst. This study presents a promising pathway for the development of advanced HOR catalysts.

8.
Small ; 20(4): e2305965, 2024 Jan.
Article En | MEDLINE | ID: mdl-37702142

Developing high-efficiency and stable oxygen evolution reaction (OER) electrocatalysts is an imperative requirement to produce green and clean hydrogen energy. In this work, the FeCoSy /NCDs composite with nitrogen-doped carbon dots (NCDs) modified Fe-Co sulfide (FeCoSy ) nanosheets is prepared by using a facile and mild one-pot solvothermal method. Benefiting from the low crystallinity and the synergistic effect between FeCoSy and NCDs, the optimal FeCoSy /NCDs-3 composite exhibits an overpotential of only 284 mV at 10 mA cm-2 , a small Tafel value of 52.1 mV dec-1 , and excellent electrochemical durability in alkaline solution. Remarkably, unlike ordinary metal sulfide electrocatalysts, the morphology, components, and structure of the FeCoSy /NCDs composite can be well retained after OER test. The NCDs modified FeCoSy composite with excellent electrocatalytic performance provides an effective approach to boost metal sulfide electrocatalysts for practical application.

9.
Small ; 20(15): e2306236, 2024 Apr.
Article En | MEDLINE | ID: mdl-38009511

The core strategy for constructing ultra-high-performance hybrid supercapacitors is the design of reasonable and effective electrode materials. Herein, a facile solvothermal-calcination strategy is developed to deposit the phosphate-functionalized Fe2O3 (P-Fe2O3) nanosheets on the reduced graphene oxide (rGO) framework. Benefiting from the superior conductivity of rGO and the high conductivity and fast charge storage dynamics of phosphate ions, the synthesized P-Fe2O3/rGO anode exhibits remarkable electrochemical performance with a high capacitance of 586.6 F g-1 at 1 A g-1 and only 4.0% capacitance loss within 10 000 cycles. In addition, the FeMoO4/Fe2O3/rGO nanosheets are fabricated by utilizing Fe2O3/rGO as the precursor. The introduction of molybdates successfully constructs open ion channels between rGO layers and provides abundant active sites, enabling the excellent electrochemical features of FeMoO4/Fe2O3/rGO cathode with a splendid capacity of 475.4 C g-1 at 1 A g-1. By matching P-Fe2O3/rGO with FeMoO4/Fe2O3/rGO, the constructed hybrid supercapacitor presents an admirable energy density of 82.0 Wh kg-1 and an extremely long working life of 95.0% after 20 000 cycles. Furthermore, the continuous operation of the red light-emitting diode for up to 30 min demonstrates the excellent energy storage properties of FeMoO4/Fe2O3/rGO//P-Fe2O3/rGO, which provides multiple possibilities for the follow-up energy storage applications of the iron-based composites.

11.
Inorg Chem ; 62(42): 17433-17443, 2023 Oct 23.
Article En | MEDLINE | ID: mdl-37817640

Oxygen evolution in electrochemical water splitting needs a high overpotential that significantly reduces the energy efficiency. To explore an alternative anodic reaction to promote the production of hydrogen at the other end of water splitting and at the same time to get high-value-added chemicals is highly desirable. Herein, we demonstrate a novel branched porous Ni3N catalyst that is prepared for dehydrogenation of tetrahydroisoquinoline, which acts as an anodic oxidation reaction to promote H2 formation on the other end. Interestingly, the Ni3N catalytic electrode can induce effective semidehydrogenation with the selective formation of dihydroisoquinoline, which is difficult to be obtained by the usual direct synthesis route. The catalytic electrode exhibits a low potential of 1.55 V (vs RHE) for a catalytic current density of 61 mA cm-2 with dehydrogenation of tetrahydroisoquinoline and hydrogen production. In situ Raman spectra studies suggest that NiOOH is formed on the electrode surface, which mediates the oxidation semidehydrogenation process. This work also provides a strategy to fabricate nitride materials for applications beyond selective semidehydrogenation of tetrahydroisoquinoline.

12.
Article En | MEDLINE | ID: mdl-37728599

Strain KC 927T was isolated during an investigation of the soil bacteria diversity on Jiaozi Mountain, central Yunnan, Southwest China. The strain was Gram-stain-negative, rod-shaped, non-motile, oxidase-negative, catalase-positive and aerobic. Results of 16S rRNA gene alignment and phylogenetic analysis indicated that strain KC 927T was a member of the genus Chryseobacterium and closely related to Chryseobacterium caseinilyticum GCR10T (98.4%), Chryseobacterium piscicola DSM 21068T (98.3 %) and 'Chryseobacterium formosus' CCTCC AB 2015118T (97.9 %). With a genome size of 4 348 708 bp, strain KC 927T had 33.5 mol% DNA G+C content and contained 4012 protein-coding genes and 77 RNA genes. The average nucleotide identity and digital DNA-DNA hybridization values between strain KC 927T and C. caseinilyticum GCR10T, C. piscicola DSM 21068T and 'C. formosus' CCTCC AB 2015118T were 80.1, 79.6 and 90.7 %, and 25.5, 23.6 and 42.0 %, respectively. The main polar lipid of strain KC 927T was phosphatidylethanolamine and the respiratory quinone was MK-6. The major fatty acids (≥10 %) were iso-C15 : 0, iso-C17 : 1 ω9c and iso-C17 : 0 3-OH. Evidence from phenotypic, phylogenetic and chemotaxonomic analyses support that strain KC 927T represents a new species of the genus Chryseobacterium, for which the name Chryseobacterium luquanense sp. nov. is proposed. The type strain is KC 927T (=CGMCC 1.18760T=JCM 35707T).


Caseins , Chryseobacterium , Base Composition , China , Chryseobacterium/genetics , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Bacteria
13.
Ther Adv Neurol Disord ; 16: 17562864231187194, 2023.
Article En | MEDLINE | ID: mdl-37663409

Background: Depression and anxiety are the most common psychiatric comorbidities in patients with epilepsy (PWE). However, they are often unrecognized and consequently untreated. Objective: The study was conducted to evaluate the prevalence and risk factors of anxiety and depression among Chinese adult PWE. Design: Cross-sectional study. Methods: Adult PWE were recruited from 13 tertiary epilepsy centers from February to September 2022. Generalized Anxiety Disorder-7 and Neurological Disorders Depression Inventory for Epilepsy were applied to evaluate anxiety and depression, respectively. Both univariate and multivariate logistic regression analyses models were performed to explore the risk factors of anxiety and depression. Results: A total of 1326 PWE were enrolled in this study. The prevalence of anxiety and depression was 31.45% and 27.30%, respectively. Being female [odds ratio (OR) = 1.467, 95% CI: 1.134-1.899; p = 0.004], focal and focal to bilateral tonic-clonic seizures (TCSZ) (OR = 1.409, 95% CI: 1.021-1.939; p = 0.036), and seizure occurrence in the last 3 months (OR = 1.445, 95% CI: 1.026-2.044; p = 0.036) were the risk factors for anxiety. Focal and focal to bilateral TCSZ (OR = 1.531, 95% CI: 1.094-2.138; p = 0.013) and seizure occurrence in the last 3 months (OR = 1.644, 95% CI: 1.130-2.411; p = 0.010) were the risk factors for depression. In addition, for every 1-year increment of age, the odds of developing depression were decreased by 3.8% (p = 4.12e-5). Nevertheless, up to 70% of PWE did not receive any treatment for comorbidity. Conclusion: There were approximately 30% of PWE screened positive for anxiety or depression. Both focal and focal to bilateral TCSZ and seizure occurrence in the last 3 months were estimated as risk factors for anxiety and depression. However, the current status of treatment was not optimal.

14.
Dalton Trans ; 52(30): 10323-10331, 2023 Aug 01.
Article En | MEDLINE | ID: mdl-37448344

Design and fabrication of cost-effective (pre-)catalysts are important for water splitting and metal-air batteries. In this direction, various metal-organic frameworks (MOFs) have been investigated as pre-catalysts for oxygen evolution. However, the activation process and the complex reconstruction behaviour of these MOFs are not well understood. Herein, square-like MOF nanosheets in which carbon nanotubes were embedded were prepared by introducing an amine ligand to coordinate with Ni ions and then reacting with [Fe(CN)6]3-. The formed MOF nanosheets containing nickel and iron species were then activated by NaBH4, inducing the leaching of ligands and the formation of tiny active species in situ loaded on carbon nanotubes. The prepared catalyst shows superior oxygen evolution performance with an ultralow overpotential of 231 mV for 10 mA cm-2, a fast reaction kinetics with a small Tafel slope of 52.3 mV dec-1, and outstanding catalysis stability. The excellent electrocatalytic performance for oxygen evolution can be attributed to the structural advantage of in situ derived small sized active species and one-dimensional conductive networks. This work provides a new thought for the enhancement of the electrocatalytic performance of MOF materials.

15.
Antimicrob Agents Chemother ; 67(8): e0022523, 2023 08 17.
Article En | MEDLINE | ID: mdl-37428039

Azole resistance in the human fungal pathogen Aspergillus fumigatus is becoming a major threat to global health. To date, mutations in the azole target-encoding cyp51A gene have been implicated in conferring azole resistance, but a steady increase in the number of A. fumigatus isolates with azole resistance resulting from non-cyp51A mutations has been recognized. Previous studies have revealed that some isolates with non-cyp51A mutation-induced azole resistance are related to mitochondrial dysfunction. However, knowledge of the molecular mechanism underlying the involvement of non-cyp51A mutations is limited. In this study, using next-generation sequencing, we found that nine independent azole-resistant isolates without cyp51A mutations had normal mitochondrial membrane potential. Among these isolates, a mutation in a mitochondrial ribosome-binding protein, Mba1, conferred multidrug resistance to azoles, terbinafine, and amphotericin B but not caspofungin. Molecular characterization verified that the TIM44 domain of Mba1 was crucial for drug resistance and that the N terminus of Mba1 played a major role in growth. Deletion of mba1 had no effect on Cyp51A expression but decreased the fungal cellular reactive oxygen species (ROS) content, which contributed to mba1-mediated drug resistance. The findings in this study suggest that some non-cyp51A proteins drive drug resistance mechanisms that result from reduced ROS production induced by antifungals.


Antifungal Agents , Aspergillus fumigatus , Humans , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Reactive Oxygen Species/metabolism , Fungal Proteins/metabolism , Membrane Proteins/metabolism , Azoles/pharmacology , Azoles/metabolism , Mitochondria/metabolism , Drug Resistance, Fungal/genetics , Microbial Sensitivity Tests
16.
J Colloid Interface Sci ; 646: 98-106, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37187052

The development of cheap, abundant, and highly efficient electrocatalysts for the oxygen evolution reaction (OER) is urgently needed for hydrogen production from water splitting. Herein, we demonstrate a novel OER electrocatalyst (NiFe(CN)5NO/Ni3S2) prepared by coupling Ni3S2 and a bimetallic metal-organic framework (MOF) of NiFe(CN)5NO on nickel foam (NF) via a simple two-step route. The NiFe(CN)5NO/Ni3S2 electrocatalyst displays an interesting rod-like hierarchical architecture assembled by ultrathin nanosheets. The combination of NiFe(CN)5NO and Ni3S2 optimizes the electronic structure of the metal active sites and increases the electron transfer capability. Benefitting from the synergistic effect between Ni3S2 and the NiFe-MOF as well as the unique hierarchical architecture, the NiFe(CN)5NO/Ni3S2/NF electrode exhibits excellent electrocatalytic OER activity with ultralow overpotentials of 162/197 mV at 10/100 mA cm-2 and an ultrasmall Tafel slope of 26 mV dec-1 in 1.0 M KOH, which are far superior to those of the individual NiFe(CN)5NO, Ni3S2 and commercial IrO2 catalysts. In particular, unlike common metal sulfide-based electrocatalysts, the composition, morphology and microstructure of the NiFe-MOF/Ni3S2 composite electrocatalyst can be well retained after the OER, which endows it with fantastic long-term durability. This work offers a new strategy for the construction of novel and high-efficiency MOF-based composite electrocatalysts for energy applications.

17.
PLoS One ; 18(4): e0284924, 2023.
Article En | MEDLINE | ID: mdl-37099548

OBJECTIVE: Familial focal epilepsy with variable foci (FFEVF) is a rare type of focal epilepsy syndrome; it is associated with NPRL3 variant. However, relevant reports are rare in China. We aimed to analyze the clinical features of Chinese patients with FFEVF to understand further the differences between various NPRL3 variants and explored the effect of NPRL3 variant on mRNA. METHODS: We ran a full workup on a family with FFEVF (four patients, one healthy member): an inquiry of medical history, cranial magnetic resonance imaging (MRI), electroencephalogram (EEG), and whole exon sequencing. Their clinical features were compared with those of other FFEVF patients in published reports. The mRNA splicing changes were analyzed quantitatively and qualitatively using real-time quantitative-polymerase chain reaction (q-PCR) and reverse transcription (RT)-PCR and compared between our patients and healthy individuals. RESULTS: Patients with NPRL3: c.1137dupT variant had a wide range of onset age (4 months to 31 years), diverse seizure types, variable foci (frontal lobe/temporal lobe), different seizure times (day/night) and frequencies (monthly/seldom/every day), different therapeutic effects (refractory epilepsy/almost seizure free), normal MRI, and abnormal EEG (epileptiform discharge, slow wave). The phenotypic spectrum with different NPRL3 variants was either similar or different. Significantly different relative quantities of mRNA were found between patients and healthy individuals in real-time qPCR. Abnormal splicing was observed in patients compared with healthy individual in RT-PCR. Despite having the same gene variant, different family members had different mRNA splicing, possibly causing different phenotypes. CONCLUSION: The clinical features of FFEVF varied, and auxiliary inspection was atypical. NPRL3: c.1137dupT could change the relative quantity of mRNA and cause abnormal splicing, which might produce different phenotypes in different family members.


Epilepsies, Partial , Epileptic Syndromes , Humans , Epilepsies, Partial/genetics , GTPase-Activating Proteins/genetics , Electroencephalography , RNA, Messenger/genetics
18.
PLoS Pathog ; 18(11): e1010976, 2022 11.
Article En | MEDLINE | ID: mdl-36374932

The eukaryotic multisubunit Elongator complex has been shown to perform multiple functions in transcriptional elongation, histone acetylation and tRNA modification. However, the Elongator complex plays different roles in different organisms, and the underlying mechanisms remain unexplored. Moreover, the biological functions of the Elongator complex in human fungal pathogens remain unknown. In this study, we verified that the Elongator complex of the opportunistic fungal pathogen Aspergillus fumigatus consists of six subunits (Elp1-6), and the loss of any subunit results in similarly defective colony phenotypes with impaired hyphal growth and reduced conidiation. The catalytic subunit-Elp3 of the Elongator complex includes a S-adenosyl methionine binding (rSAM) domain and a lysine acetyltransferase (KAT) domain, and it plays key roles in the hyphal growth, biofilm-associated exopolysaccharide galactosaminogalactan (GAG) production, adhesion and virulence of A. fumigatus; however, Elp3 does not affect H3K14 acetylation levels in vivo. LC-MS/MS chromatograms revealed that loss of Elp3 abolished the 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) modification of tRNA wobble uridine (U34), and the overexpression of tRNAGlnUUG and tRNAGluUUC, which normally harbor mcm5s2U modifications, mainly rescues the defects of the Δelp3 mutant, suggesting that tRNA modification rather than lysine acetyltransferase is responsible for the primary function of Elp3 in A. fumigatus. Strikingly, global proteomic comparison analyses showed significantly upregulated expression of genes related to amino acid metabolism in the Δelp3 mutant strain compared to the wild-type strain. Western blotting showed that deletion of elp3 resulted in overexpression of the amino acid starvation-responsive transcription factor CpcA, and deletion of CpcA markedly reversed the defective phenotypes of the Δelp3 mutant, including attenuated virulence. Therefore, the findings of this study demonstrate that A. fumigatus Elp3 functions as a tRNA-modifying enzyme in the regulation of growth, GAG production, adhesion and virulence by maintaining intracellular amino acid homeostasis. More broadly, our study highlights the importance of U34 tRNA modification in regulating cellular metabolic states and virulence traits of fungal pathogens.


Aspergillus fumigatus , Histone Acetyltransferases , Humans , Uridine/genetics , Aspergillus fumigatus/genetics , Aspergillus fumigatus/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Virulence , Proteomics , Chromatography, Liquid , Tandem Mass Spectrometry , RNA, Transfer/genetics , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Amino Acids
19.
Epilepsy Behav ; 136: 108937, 2022 11.
Article En | MEDLINE | ID: mdl-36215830

OBJECTIVE: Perampanel (PER) has previously been shown to be effective and tolerable when used as an adjunctive therapy for patients with focal-onset seizures (FOS). This study aimed to evaluate the effect of PER as adjunctive therapy for patients with FOS in the Chinese population under real-world conditions for 1 year. METHODS: A prospective, single-center, 1-year observational study was conducted at Huashan Hospital, enrolling both under age (≥4 years old) and adult patients with FOS. Response to PER was assessed at 3-, 6-, and 12-month checkpoints by analyzing the 50 % responder rate, the seizure-free rate, and reduction in seizure frequency. RESULTS: One hundred and eight patients (mean age: 26.6 years, 56.5 % males) with FOS were included, with seventy-six patients finishing the 1-year follow-up (retention rate: 70.4 %, mean PER dose: 4.3 mg/day). The seizure frequency was reduced significantly at 3, 6, and 12 months relative to baseline (p < 0.001 for each seizure type). At 12 months, the responder rate was 65.8 %, and the seizure-free rate was 39.5 %. A significantly higher responder rate was found in patients with focal to bilateral tonic-clonic seizures (p = 0.024), among which the percentage of patients with sleep-related epilepsy was significantly high (p = 0.045). Responders had a lower number of concomitant anti-seizure medications (ASMs) than the non-responders (p = 0.009). Drug-related adverse events (AEs) were reported in 37 % of patients, mostly mild or moderate, and the patients who experienced AEs had a higher daily dose of PER than those who did not (p = 0.026). CONCLUSION: Perampanel, an add-on therapy for focal-onset seizures, was found to be effective and tolerable in Chinese patients at 12 months.


Anticonvulsants , Epilepsies, Partial , Adult , Male , Humans , Child, Preschool , Female , Prospective Studies , Anticonvulsants/adverse effects , Treatment Outcome , Epilepsies, Partial/drug therapy , Epilepsies, Partial/chemically induced , Pyridones/adverse effects , China/epidemiology , Drug Therapy, Combination
20.
Dalton Trans ; 51(40): 15467-15474, 2022 Oct 18.
Article En | MEDLINE | ID: mdl-36156615

The development of hydrogen-oxygen fuel cells with an alkaline electrolyte was highly limited by the sluggish kinetics of the hydrogen oxidation reaction (HOR). Here, with a pyrolysis-reduction route, a new RuNi-based electrocatalyst was prepared, which presents an ultrathin nanowire-like structure. In alkaline media, this catalyst shows an excellent catalytic performance with an exchange current density of 1.10 mA cm-2disk for hydrogen oxidation. The exchange current density and mass activity of this catalyst are much higher than those of its single-metal counterparts and even the commercial Pt/C catalyst containing 20% Pt. Such a remarkable catalytic activity can be explained by the interaction between Ru and Ni; the incorporation of Ni may induce an electronic effect on the optimization of the Ru-Had strength and provide a functional surface that can absorb OH species, thus boosting the catalytic activity. These findings may cast a new light on the exploration of low-cost but high-efficiency catalysts for fuel cells.

...