Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Neurosci ; : 1-15, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39282903

RESUMEN

BACKGROUND: Chemoradiotherapy is the major means in the treatment of gliomas followed surgery. Ferroptosis has been shown to play an important role in carcinogenesis by many studies. However, its underlying effect on chemoradiotherapy sensitivity in gliomas remains unclear. METHODS: The genetic and clinical information and ferroptosis-related genes were downloaded from The Cancer Genome Atlas (TCGA) database. Gene Expression Profiling Interactive Analysis (GEPIA) was used to perform hub gene expression and survival analysis. Cell Counting Kit 8 (CCK-8), colony formation, 5-Ethynyl-2'-Deoxyuridine (EdU), Transwell and chemoradiotherapy sensitivity experiments were performed to confirm the biological function of RGS4 in glioma cells. The molecular mechanism of RGS4 on ferroptosis in gliomas was explored in vitro. RESULTS: 385 ferroptosis-related genes were identified via bioinformatics analysis. 16 differential expressed genes (DEGs) were identified as radiation-related genes. Among them, RGS4, HSPA5, and SLC40A1 had prognostic values in further analysis. The calculated risk score could significantly distinguish the high-risk population. Moreover, RGS4 expression was closely related with immune infiltration and regulators. RGS4 knockdown could inhibit the proliferation and migration of glioma cells. Down-regulation of RGS4 expression induced ferroptosis to promote cancer sensitivity to chemoradiotherapy. CONCLUSIONS: A three-gene signature was developed in a risk-score model, which could be used to predict the prognosis of glioma patients. RGS4 is dysregulated in many types of cancers, and is a candidate prognostic biomarker for many types of cancers. Moreover, RGS4 may be a target for predicting and enhancing the chemoradiotherapy sensitivity of gliomas.

2.
Oral Oncol ; 158: 106999, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39197193

RESUMEN

Regulatory B (Breg) cells is a type of immune cell that exhibit immunosuppressive behavior within the tumor microenvironment. However, the differentiation and regulatory mechanisms of these Breg cells remain unexplored. Single-cell transcriptome sequencing analysis of human nasopharyngeal carcinoma (NPC) revealed a significant enrichment of B cell subset characterized by high expression of EGR1 and EGR3 in the tumor microenvironment. Notably, in the hypoxic microenvironment, these B cells induce MAPK pathway activation, subsequently triggering the activation of transcription factors EGR1 and EGR3, which further modulate the expression of immunosuppressive factors like TGFB1 and IL10. In transplant experiments using primary B cells induced under hypoxia and co-transplanted with cancer cells, a significant increase in tumor growth was observed. Mechanism experiments demonstrated that EGR1hi and EGR3+ B cells further activate the maturation and immunosuppressive function of Treg cells through the secretion of IL16 and TNF-α. Hence, this study identifies the key transcription factors EGR1 and EGR3 as essential regulators and elucidates the differentiation of Breg cells under hypoxic conditions.


Asunto(s)
Proteína 1 de la Respuesta de Crecimiento Precoz , Proteína 3 de la Respuesta de Crecimiento Precoz , Carcinoma Nasofaríngeo , Microambiente Tumoral , Humanos , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patología , Carcinoma Nasofaríngeo/inmunología , Carcinoma Nasofaríngeo/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 3 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 3 de la Respuesta de Crecimiento Precoz/genética , Animales , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/inmunología , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/genética , Ratones , Linfocitos B/metabolismo , Linfocitos B/inmunología , Línea Celular Tumoral , Hipoxia de la Célula
3.
Adv Sci (Weinh) ; 11(7): e2302886, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38064179

RESUMEN

Narrow bandgap materials have garnered significant attention within the field of broadband photodetection. However, the performance is impeded by diminished absorption near the bandgap, resulting in a rapid decline in photoresponsivity within the mid-wave infrared (MWIR) and long-wave infrared (LWIR) regions. Furthermore, they mostly worked in cryogenic temperature. Here, without the assistance of any complex structure and special environment, it is realized high responsivity covering ultra-broadband wavelength range (Ultraviolet (UV) to LWIR) in a single quasi-1D pseudogap (PG) system (TaSe4 )2 I nanoribbon, especially high responsivity (From 23.9 to 8.31 A W-1 ) within MWIR and LWIR region at room temperature (RT). Through direct probing the carrier relaxation process with broadband time-resolved transient absorption spectrum measurement, the underlying mechanism of majorly photoconductive effect is revealed, which causes an increased spectral weight extended to PG region. This work paves the way for realizing high-performance uncooled MWIR and LWIR detection by using quasi-1D PG materials.

4.
Nanoscale ; 15(44): 17839-17849, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37882243

RESUMEN

Realizing precise therapy for glioblastomas (GBMs), a kind of high-frequency malignant brain tumor, is of great importance in improving the overall survival (OS) of patients. With relentless efforts made in the past few years, a sponge medium has been introduced into concurrent tumor treating fields (TTFields) and radiotherapy to enhance therapy efficacy for GBMs, and some progresses have been witnessed. However, the specific physical and chemical characteristics of the sponge that can be used for GBMs have not been reported as far as we know. Therefore, this study aims to develop a simple yet robust method to select a candidate sponge medium and verify its safety in advanced concurrent TTFields and radiotherapy for GBMs through interdisciplinary investigation among materials science, medical physics, and clinical radiation oncology. Significantly, latex-free polyurethane (PU) sponges with a Hounsfield unit (HU) value lower than -750, which exhibit almost no negative influence on planning computed tomography (CT) imaging and radiotherapy dosimetry, are demonstrated to be available for concurrent TTFields and radiotherapy for GBMs. Moreover, in clinical research, the achieved clear CT images, negligible scalp toxicity, lower residual positioning errors, and high compliant rate of 82% over the selected representative sponge sample corroborate the availability and safety of PU sponges in practical applications for GBM treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Oncología por Radiación , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/terapia , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia
5.
Artículo en Inglés | MEDLINE | ID: mdl-36751031

RESUMEN

Two-dimensional (2D) material heterostructures have attracted considerable attention owing to their interesting and novel physical properties, which expand the possibilities for future optoelectronic, photovoltaic, and nanoelectronic applications. A portable, fast, and deterministic transfer technique is highly needed for the fabrication of heterostructures. Herein, we report a fast half-wet poly(dimethylsiloxane) (PDMS) transfer process utilizing the change of adhesion energy with the help of micron-sized water droplets. Using this method, a vertical stacking of the WS2/Bi2Se3 heterostructure with a straddling band configuration is successfully assembled on a fluorophlogopite substrate. Thanks to the complementary band gaps and high efficiency of interfacial charge transfer, the photodetector based on the heterostructure exhibits a superior responsivity of 109.9 A W-1 for a visible incident light at 473 nm and 26.7 A W-1 for a 1064 nm near-infrared illumination. Such high photoresponsivity of the heterostructure demonstrates that our transfer method not only owns time efficiency but also ensures high quality of the heterointerface. Our study may open new pathways to the fast and massive fabrication of various vertical 2D heterostructures for applications in twistronics/valleytronics and other band engineering devices.

6.
ACS Nano ; 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36633906

RESUMEN

As basic building blocks for next-generation information technologies devices, high-quality p-n junctions based on van der Waals (vdW) materials have attracted widespread interest. Compared to traditional two-dimensional (2D) heterojunction diodes, the emerging homojunctions are more attractive owing to their intrinsic advantages, such as continuous band alignments and smaller carrier trapping. Here, utilizing the long-range migration of Cu+ ions under an in-plane electric field, a lateral p-n homojunction was constructed in the 2D layered copper indium thiophosphate (CIPS). The symmetric Au/CIPS/Au devices demonstrate an electric-field-driven resistance switching (RS) accompanied by a rectification behavior without any gate control. Moreover, such rectification behavior can be continuously modulated by poling voltage. We deduce that the reversable rectifying RS behavior is governed by the effective lateral build-in potential and the change of the interfacial barrier during the poling process. Furthermore, the CIPS p-n homojuction is evidenced by the photovoltaic effect, with the spectral response extending up to the visible region due to the better photogenerated carrier separation efficiency. Therefore, this work provides a facile route to fabricate homojunctions through electric-field-driven ionic migration.

7.
J Oncol ; 2022: 3579547, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35813862

RESUMEN

Purpose: Gastric cancer is one of the most common malignancies with high mortality worldwide. It is known that long noncoding RNAs (lncRNAs) play important roles in the pathogenesis of gastric cancer. This study investigates the role of lncRNA ZNF667-AS1 in gastric cancer cells. Methods: We have applied real-time quantitative PCR (qPCR) to study the levels of ZNF667-AS1 in gastric cancer biopsies and cell lines. The effects of ZNF667-AS1 on the propagation, clonogenicity, metastasis, and angiogenesis of gastric cancer cells were evaluated by calorimetry, colony formation, cell migration, and angiogenesis assays. Western blotting was used to identify the levels of proteins involved in cancer invasion and angiogenesis signaling pathways. Result: It was found that lncRNA ZNF667-AS1 was downregulated in gastric cancer biopsies. Overexpression of ZNF667-AS1 reduced the propagation, migration, and angiogenesis of gastric cancer cells. Molecular mechanism studies displayed that the high level of lncRNA ZNF667-AS1 promoted the expression of E-cadherin and inhibited the expression of N-cadherin and VEGFA, leading to the inhibition of the proliferation, migration, and angiogenesis of gastric cancer cells. Conclusion: As a tumor suppressor gene, lncRNA ZNF667-AS1 significantly hinders the propagation, metastasis, and angiogenesis of gastric cancer cells by promoting the expression of E-cadherin and inhibiting the expression of N-cadherin and VEGFA. Therefore, lncRNA ZNF667-AS1 could play a synergistic therapeutic role by targeting tumor cells and vascular endothelial cells, which represents a new therapeutic scheme for novel therapeutics of gastric cancer.

8.
Cell Death Discov ; 8(1): 53, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35136045

RESUMEN

N6-Methyladenosine (m6A) modification is the most abundant RNA modification in eukaryotic cells. IGF2BP3, a well-known m6A reader, is deregulated in many cancers, but its role in nasopharyngeal carcinoma (NPC) remains unclear. In this work, IGF2BP3 was upregulated in NPC tissues and cells. The high level of IGF2BP3 was positively related to late clinical stages, node metastasis, and poor outcomes. Moreover, IGF2BP3 accelerated NPC cell tumor progression and metastasis in vitro and vivo. Upstream mechanism analyses indicated that the high expression of IGF2BP3 in head and neck tumors was mainly due to mRNA level amplification. Luciferase assay and chromatin immunoprecipitation assay (CHIP) depicted that MYC was effectively bound to the promoter of IGF2BP3, thereby improving its transcriptional activity. Results also showed that IGF2BP3 was not only positively correlated with KPNA2 expression but also modulated the expression of KPNA2. m6A RNA immunoprecipitation (MeRIP) and RNA stability experiments verified that silencing IGF2BP3 significantly inhibited the m6A modification level of KPNA2, thereby stabilizing the mRNA stability of KPNA2. Rescue experiments proved that the effect of inhibiting or overexpressing IGF2BP3 on NPC cells was partly reversed by KPNA2. Collectively, MYC-activated IGF2BP3 promoted NPC cell proliferation and metastasis by influencing the stability of m6A-modified KPNA2. Our findings offer new insights that IGF2BP3 may serve as a new molecular marker and potential therapeutic target for NPC treatment.

9.
Cancer Manag Res ; 11: 5871-5882, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31303793

RESUMEN

Background: ZNF488 acts as an oncogene which promotes cell invasion and endows tumor cells stem cell capacity in nasopharyngeal carcinoma (NPC), but its correlation with clinicopathologic characteristics and patients' survival in NPC remain undefined. Methods: In this study, 158 cases of confirmed NPC were subjected to immunohistochemistry staining for evaluating endogenous expression. Kaplan-Meier method and log-rank test were used to estimate the survival rates. The relationship between ZNF488 and clinicopathological characteristics was statistically calculated by chi-squared test, univariate and multivariate analysis. In addition, adhesion assay, MTT and colony formation assays were performed for measuring adhesion and proliferation capacity. Cell cycle analysis via flow cytometry was conducted to explore cell cycle distribution. Western blot was used to detect pathway protein levels, and the pFAK (Y397) kit was used for focal adhesion kinase (FAK) activation. Results: We demonstrated that high expression of ZNF488 was significantly correlated with locoregional failure (P=0.018) and distant metastasis (P=0.001). Patients with high ZNF488 expression had poorer overall survival (P<0.001), loco-regional recurrence-free survival (P<0.001), distance metastasis-free survival (P<0.001) and progression-free survival (P<0.001) than those with low ZNF488 group. Multivariate analysis showed that ZNF488 expression was an independent prognostic indicator for predicting NPC patients' survival (HR, 3.314; 95% CI, 1.489-7.386; P=0.003). Additionally, ZNF488-induced collagen IV/FAK/AKT to enhance adhesion ability meanwhile led to the upregulation of Cyclin D1 to facilitate cell proliferation through promoting cell cycle progression and inhibition of apoptosis through caspase-independent way. Conclusion: These results reveal that ZNF488, as an independent prognostic indicator, promotes cell adhesion and proliferation through collagen IV/FAK/AKT/Cyclin D1 pathway in NPC.

10.
Materials (Basel) ; 12(1)2019 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-30609837

RESUMEN

Strontium titanate thin films were deposited on a silicon substrate by radio-frequency magnetron sputtering. The structural and optical properties of these films were characterized by X-ray diffraction, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and spectroscopic ellipsometry, respectively. After annealing at 600⁻800 °C, the as-deposited films changed from amorphous to polycrystalline. It was found that an amorphous interfacial layer appeared between the SrTiO3 layer and Si substrate in each as-deposited film, which grew thicker after annealing. The optical parameters of the SrTiO3 film samples were acquired from ellipsometry spectra by fitting with a Lorentz oscillator model. Moreover, we found that the band gap energy of the samples diminished after thermal treatment.

11.
J Cell Biochem ; 120(5): 7845-7857, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30426564

RESUMEN

Aberrant microRNAs (miRNAs) expressions could contribute to the progression of numerous cancers, including esophageal squamous cell carcinoma, while miR-10a participates in multiple biological processes on cancers. However, the molecular mechanism of miR-10a in esophageal squamous cell carcinoma (ESCC) has not been investigated. Herein, miR-10a was significantly reduced in ESCC clinical tissues and ESCC cell lines (EC109 and TE-3). In addition, immunohistochemistry indicated that the expressions of α-SMA, Ki-67, and PCNA in tumor tissues were higher than that of controls. In vitro, overexpression of miR-10a dramatically suppressed cell proliferation and enhanced cell apoptosis, while the decrease of miR-10a expressed the opposite outcome. Specially, overexpression of miR-10a caused a G0/G1 peak accumulation. Moreover, miR-10a also negatively regulated ESCC cell migration and invasion. Furthermore, targetscan bioinformatics predictions and the dual-luciferase assay confirmed that Tiam1 was a direct target gene of miR-10a. The statistical analysis showed Tiam1 was negatively in correlation with miR-10a in ESCC patient samples. And silencing Tiam1 could lead to a decline on cell growth, invasion, and migration in ESCC cell lines, while it could enhance cell apoptosis and cause a G0/G1 peak accumulation. In vivo, it revealed that miR-10a notably decreased the tumor growth and metastasis in xenograft model and pulmonary metastasis model. And it showed a lower expressions of Tiam1 in the miR-10a mimics group by immunohistochemistry. Taken together the results, they indicated that miR-10a might function as a novel tumor suppressor in vitro and in vivo via targeting Tiam1, suggesting miR-10a to be a candidate biomarker for the ESCC therapy.

12.
Biochem Cell Biol ; 97(2): 158-164, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30074401

RESUMEN

Breast cancer is the most frequent malignant disease in women worldwide. It is a heterogeneous and complex genetic disease with different molecular characteristics. MAPT-AS1, a long non-coding RNA (lncRNA) existing at the anti-sense strand of the MAPT (microtubule associated protein tau) promoter region, was believed to regulate MAPT, which was associated with disease state in Parkinson's disease. But the role of MAPT-AS1 in breast cancer has never been reported. In our study we found that MAPT-AS1 is overexpressed in breast cancer but not in triple negative breast cancer (TNBC), and that high expression of MAPT-AS1 was correlated with better patient survival. In addition, the level of MAPT-AS1 was correlated with the expression of MAPT, and MAPT was associated with survival time in breast cancer. Our study suggests that MAPT-AS1 may play a role and be a potential survival predictive biomarker in breast cancer.


Asunto(s)
Neoplasias de la Mama , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante/biosíntesis , ARN Neoplásico/biosíntesis , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Supervivencia sin Enfermedad , Femenino , Humanos , Proteínas de Neoplasias/biosíntesis , Tasa de Supervivencia , Proteínas tau/biosíntesis
13.
Onco Targets Ther ; 11: 7483-7492, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30498361

RESUMEN

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a common malignant tumor characterized by highly malignant local invasion and distant metastasis. Recently, increasing attention has been paid to long noncoding RNAs (lncRNAs), which play significant roles in tumorigenesis and progression. However, little is known about the potential role of the lncRNA urothelial carcinoma-associated 1 (UCA1) in NPC cell invasion and migration. METHODS: Real-time quantitative PCR was used to analyze the expression of lncRNA UCA1 in NPC cell lines and NP69. lncRNA UCA1 knock-down nasopharyngeal carcinoma cell line models were established through siRNA. Cell viability was evaluated by Cell counting kit-8 and Colony forming assay. The migration and invasion capacities were evaluated by wound healing and transwell migration and invasion assays. Western blot analysis were used to examine protein changes followed by UCA1 knock-down. RESULTS: Our study confirmed that UCA1 was upregulated in NPC cell lines and involved in NPC tumorigenesis according to our established UCA1-associated competing endogenous RNA network. Moreover, functional analyses indicated that the downregulation of UCA1 exerted inhibitory effects on cell proliferation, invasion, and migration. Mechanistic analyses revealed that UCA1 was the target of miR-145 and functioned as a sponge to repress miR-145 expression. Rescue experiments suggested that lncRNA UCA1 reversed the miR-145-mediated inhibition on oncogene ADAM17 expression, thus promoting the proliferation, invasion, and migration of NPC cells. CONCLUSION: LncRNA UCA1 functions as a tumor promoter in NPC. UCA1 promotes the proliferation and invasion of NPC cells by sponging miR-145, functionally altering ADAM17 expression targeted by miR-145. Our exploration of the underlying mechanism of UCA1 in NPC may provide novel therapeutic targets for NPC.

14.
J Cell Biochem ; 119(10): 8359-8367, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29932247

RESUMEN

Huperzine A (HupA), derived from Huperzia Serrata, has exhibited a variety of biological actions, in particular neuroprotective effect. However, the protective activities of HupA on murine embryonic fibroblast NIH3T3 cells after X-rays radiation have not been fully elucidated. Herein, HupA treatment dramatically promoted cell viability, abated a G0/G1 peak accumulation, and ameliorated increase of cell apoptosis in NIH3T3 cells after X-rays radiation. Simultaneously, HupA notably enhanced activities of anti-oxidant enzymes, inhibited activity of lipid peroxide, and efficiently eliminated production of reactive oxygen species in NIH3T3 cells after X-rays radiation. Dose-dependent increase of antioxidant genes by HupA were associated with up-regulated Nrf2 and down-regulated Keap-1 expression, which was confirmed by increasing nuclear accumulation, and inhibiting of degradation of Nrf2. Notably, augmented luciferase activity of ARE may explained Nrf2/ARE-mediated signaling pathways behind HupA protective properties. Moreover, expression of Nrf2 HupA-mediated was significant attenuated by AKT inhibitor (LY294002), p38 MAPK inhibitor (SB202190) and ERK inhibitor (PD98059). Besides, HupA-mediated cell viability, and ROS production were dramatically bated by LY294002, SB202190, and PD98059. Taken together, HupA effectively ameliorated X-rays radiation-induced damage Nrf2-ARE-mediated transcriptional response via activation AKT, p38, and ERK signaling in NIH3T3 cells.


Asunto(s)
Alcaloides/farmacología , Elementos de Respuesta Antioxidante , Proteína 1 Asociada A ECH Tipo Kelch/genética , Factor 2 Relacionado con NF-E2/genética , Protectores contra Radiación/farmacología , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Sesquiterpenos/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Apoptosis/efectos de la radiación , Catalasa/genética , Catalasa/metabolismo , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Ciclo Celular/efectos de la radiación , Cromonas/farmacología , Flavonoides/farmacología , Regulación de la Expresión Génica , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Imidazoles/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/antagonistas & inhibidores , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Peróxidos Lipídicos/antagonistas & inhibidores , Peróxidos Lipídicos/metabolismo , Ratones , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Morfolinas/farmacología , Factor 2 Relacionado con NF-E2/agonistas , Factor 2 Relacionado con NF-E2/metabolismo , Células 3T3 NIH , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piridinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Rayos X , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
J Cancer ; 9(9): 1642-1651, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29760803

RESUMEN

Background: This study aimed to compare concurrent chemoradiotherapy (CCRT) plus cetuximab (C) with CCRT alone in locoregionally advanced nasopharyngeal carcinoma(NPC). Methods: A total of 682 locoregionally advanced NPC patients who had undergone chemoradiotherapy with or without cetuximab were included. Propensity score-matching method was used to match patients. Progression-free survival (PFS), overall survival (OS), locoregional relapse-free survival (LRFS), and distant metastasis-free survival (DMFS) were compared between the two treatment arms. Results: After matching, 225 patients were identified for the analysis. Compared to CCRT, CCRT plus C was associated with significantly improved 3-year PFS (83.7% vs 71.9%, P = 0.036), LRFS (98.6% vs 90.2%, P = 0.034) but not OS (91.4% vs 85.4%, P = 0.117). Among patients with T4 and/or N3 category, CCRT plus C significantly prolonged 3-year PFS (81.0% vs 61.4%, P = 0.022) and increased 3-year OS (88.0% vs 77.9%, P = 0.086). No significant differences were observed between CCRT plus C and CCRT alone groups with regard to 3-year PFS, OS, LRFS and DMFS rates in stage III patients. Acute oral and oropharyngeal mucositis during radiotherapy were more common in the CCRT plus C than that in CCRT, but late toxicities were comparable. Conclusions: This study reveals that patients with locoregionally advanced NPC could benefit from the addition of cetuximab to CCRT, and this therapeutic gain mainly originated from T4 and/or N3 subgroup although suffering more acute moderate to severe toxicities.

16.
Int J Oncol ; 52(6): 1853-1862, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29620258

RESUMEN

Autophagy inhibition is crucial for the improvement of the efficacy of radiotherapy in cancer. The aim of the present study was to determine the potential therapeutic value of autophagy and its correlation with mitochondria in human esophageal carcinoma cells following treatment with ionizing radiation (IR). Autophagy in Eca­109 cells was induced under poor nutrient conditions. The formation of autophagic vacuoles was monitored using electron microscopy. In addition, cell apoptosis after IR and mitochondrial membrane potential (MMP) were analyzed by flow cytometry. LC3, beclin­1, cytochrome c and apoptosis-related proteins were assayed by western blotting. A nude mouse xenograft model was also employed to verify the biological effects and mechanisms underlying autophagy in vivo. The formed autophagic vesicles and increased LC3 II/LC3 I ratio indicated marked induction of autophagy by Earle's balanced salt solution (EBSS) in Eca­109 cells. 3­Methyladenine or LY294002 significantly antagonized EBSS-induced autophagy and increased apoptosis of irradiated cells, suggesting that autophagy inhibition conferred radiosensitivity in vitro. Notably, IR induced prominent release of cytochrome c and Bax activation, and decreased Bcl-2 and MMP expression in Eca­109 cells under poor nutrient conditions. Of note, these changes were more prominent following pretreatment with autophagy inhibitors. In vivo, IR treatment mildly delayed tumor growth, but the radiotherapeutic effect was improved significantly by abolishing autophagy. Furthermore, mitochondrial signaling was investigated in the Eca­109 xenograft nude mice model, and the results were consistent with the in vitro study. Therefore, the mitochondrial pathway may be associated with improvement of radiosensitivity in Eca­109 cells.


Asunto(s)
Adenina/análogos & derivados , Autofagia/efectos de los fármacos , Cromonas/farmacología , Neoplasias Esofágicas/terapia , Morfolinas/farmacología , Tolerancia a Radiación , Adenina/farmacología , Animales , Línea Celular Tumoral , Neoplasias Esofágicas/metabolismo , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/efectos de la radiación , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de la radiación , Ratones , Ratones Desnudos , Tolerancia a Radiación/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Transl Oncol ; 11(3): 619-627, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29573639

RESUMEN

Lung cancer is notorious for high morbidity and mortality around the world. Interleukin (IL)-8, a proinflammatory chemokine with tumorigenic and proangiogenic effects, promotes lung cancer cells growth and migration and contributes to cell aggressive phenotypes. Integrin αvß6 is a receptor of transmembrane heterodimeric cell surface adhesion, and its overexpression correlates with poor survival from non-small cell lung cancer. However, the cross talk between αvß6 and IL-8 in lung cancer has not been characterized so far. Herein, human lung cancer samples were analyzed, and it revealed that the immunohistochemical and mRNA expression of integrin αvß6 was significantly correlated with the expression of IL-8. Furthermore, in vitro, integrin αvß6 increased cell proliferation, migration, and invasion by impairing the expressions of MMP-2 and MMP-9 and inhibited cell apoptosis in human lung cancer cells A549 and H460. In addition, integrin αvß6 upregulated IL-8 expression through activating MAPK/ERK signaling. The in vivo experiment showed that integrin αvß6 promoted tumor growth in xenograft model mice by accelerating tumor volume and reducing apoptosis. Meanwhile, lung metastasis model experiment suggested that integrin αvß6 stimulated tumor metastasis with the increase of lung/total weight and tumor nodules. Simultaneously, integrin αvß6 upregulated IL-8 expression detected by both Western blots and immunohistochemistry, along with the activation of MAPK/ERK signaling. Overall, these data suggested that, in vitro and in vivo, integrin αvß6 promoted lung cancer proliferation and metastasis, at least in part, through upregulation of IL-8-mediated MAPK/ERK signaling. Thus, the inhibition of integrin αvß6 and IL-8 may be the key for the treatment of lung cancer.

18.
PLoS One ; 10(9): e0137383, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26367317

RESUMEN

BACKGROUND: N-stage is related to distant metastasis in nasopharyngeal carcinoma (NPC) patients. The purpose of this study was to evaluate the efficacy and toxicity of different nedaplatin-based chemotherapy regimens in advanced N2-3 stage NPC patients treated with intensity modulated radiation therapy (IMRT). PATIENTS AND METHODS: Between April 2005 and December 2009, a total of 128 patients with N2-3 advanced NPC were retrospectively analyzed. Patients were treated with IMRT concurrent with 2 cycles of chemotherapy consisting of either nedaplatin plus paclitaxel (NP group, n = 67) or nedaplatin plus fluorouracil and paclitaxel (NFP group, n = 61). Two to four cycles of adjuvant chemotherapy were then administered every 21 days following concurrent chemoradiotherapy. RESULTS: With a median follow-up of 60 months, the 5-year overall survival (OS), progression-free survival (PFS), local-regional recurrence-free survival (LRRFS), and distant metastasis-free survival (DMFS) for all patients were 81.4%, 71.5%, 87.8% and 82.0%, respectively. No significant difference in PFS (66.6% vs. 76.7%, P = 0.212) and LRRFS rates (89.0% vs. 86.3%, P = 0.664) was observed between the NP and NFP groups. The 5-year OS (75.4% vs. 88.5%, P = 0.046) and DMFS (75.1% vs. 89.0%, P = 0.042) rate were superior in the NFP group compared with the NP group. The NFP group had a higher incidence of grade 3-4 acute toxicities including bone marrow suppression (leukopenia: χ2 = 3.935, P = 0.047; anemia: χ2 = 9.760, P = 0.002; thrombocytopenia: χ2 = 8.821, P = 0.003), and both liver and renal dysfunction (χ2 = 5.206, P = 0.023) compared with the NP group. Late toxicities were moderate and no difference was observed between the two groups. CONCLUSION: IMRT concurrent with nedaplatin-based chemotherapy is an advocated regimen for patients with advanced N2-3 stage NPC. Patients with advanced N2-3 stage may be better candidates for the NFP regimen although this regimen was associated with a high acute toxicity rate.


Asunto(s)
Quimioradioterapia , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/terapia , Sobrevivientes , Adulto , Antineoplásicos/uso terapéutico , Antineoplásicos/toxicidad , Carcinoma , Femenino , Humanos , Masculino , Persona de Mediana Edad , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/diagnóstico , Estadificación de Neoplasias , Compuestos Organoplatinos/uso terapéutico , Compuestos Organoplatinos/toxicidad , Pronóstico
19.
Biomed Res Int ; 2015: 617949, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25802858

RESUMEN

This retrospective study aims to examine the association of plasma Epstein-Barr virus- (EBV-) DNA levels with the tumor volume and prognosis in patients with locally advanced nasopharyngeal carcinoma (NPC). A total of 165 patients with newly diagnosed locally advanced NPC were identified from September 2011 to July 2012. EBV-DNA was detected using fluorescence quantitative polymerase chain reaction (PCR) amplification. The tumor volume was calculated by the systematic summation method of computer software. The median copy number of plasma EBV-DNA before treatment was 3790 copies/mL. The median gross tumor volume of the primary nasopharyngeal tumor (GTVnx), the lymph node lesions (GTVnd), and the total GTV before treatment were 72.46, 23.26, and 106.25 cm(3), respectively; the EBV-DNA levels were significantly correlated with the GTVnd and the total GTV (P < 0.01). The 2-year overall survival (OS) rates in patients with positive and negative pretreatment plasma EBV-DNA were 100% and 98.4% (P = 1.000), and the disease-free survival (DFS) rates were 94.4% and 80.8% (P = 0.044), respectively. These results indicate that high pretreatment plasma EBV-DNA levels in patients with locally advanced NPC are associated with the degree of lymph node metastasis, tumor burden, and poor prognosis.


Asunto(s)
ADN Viral/sangre , Herpesvirus Humano 4/genética , Neoplasias Nasofaríngeas/sangre , Neoplasias Nasofaríngeas/virología , Carga Tumoral , Carcinoma , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/patología , Estadificación de Neoplasias , Pronóstico
20.
Sci Rep ; 5: 8586, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25717033

RESUMEN

Zirconium dioxide provides an exceptional prototype material for studying the redistribution of the polaron holes and its magnetic coupling with their nearby anions owning to the difference oxygen binding behavior in the monoclinic phase. Here, we perform a comprehensive study of the p-electron magnetism in the nitrogen doped 2 × 2 × 2 monoclinic ZrO2 based on spin-polarized density functional theory. Nitrogen substitutions make the system display half-metallic properties, and the origin of room temperature ferromagnetism ascribes to the p-p coupling interaction between N 2p and the host 2p states. The charge density difference and Mülliken population analyses provide evidences of charge redistributions. Our results reveal that the polaron transfer may alter the magnetic properties and it is greatly facilitated ferromagnetic coupling if the polaron holes are localized around a single anion dopant.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA