Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Methods ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39143932

RESUMEN

Cadmium (Cd2+) is a highly toxic heavy metal that can accumulate in the human body through contaminated food and water, posing great health risks. In this study, a label-free fluorescent aptasensor based on SYBR Green I (SGI) for the rapid and sensitive detection of Cd2+ in food samples was designed. The aptasensor utilizes a Cd2+-specific aptamer (Cd-(21)) and its complementary strand (CSCd-(21)) to form a double-stranded DNA (dsDNA) structure in the absence of Cd2+. SGI intercalates into the dsDNA, resulting in a strong fluorescence signal. In the presence of Cd2+, the aptamer undergoes a conformational change, preventing the formation of dsDNA and leading to a decrease in fluorescence intensity. Under optimized conditions, the aptasensor exhibited a linear response to Cd2+ concentrations ranging from 0.11 to 157.37 ng mL-1, with a limit of detection (LOD) of 0.07 ng mL-1. The aptasensor demonstrated high specificity and was successfully applied to detect Cd2+ in fruits and vegetables, with satisfactory recovery rates (95-111%). The proposed aptasensor provides a promising tool for the rapid and sensitive detection of Cd2+ in food.

2.
J Sci Food Agric ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38828647

RESUMEN

BACKGROUND: In response to growing concerns regarding heavy metal contamination in food, particularly chromium (Cr)(VI) contamination, this study presented a simple, sensitive and practical method for Cr(VI) detection. RESULTS: A magnetic separation-based capture-exponential enrichment ligand system evolution (SELEX) method was used to identify and characterize DNA aptamers with a high affinity for Cr(VI). An aptamer, Cr-15, with a dissociation constant (Kd) of 4.42 ± 0.44 µmol L-1 was obtained after only eight rounds of selection. Further innovative methods combining molecular docking, dynamic simulation and thermodynamic analysis revealed that CrO4 2- could bind to the 19th and 20th guanine bases of Cr-15 via hydrogen bonds. Crucially, a label-free fluorometric aptasensor based on SYBR Green I was successfully constructed to detect CrO4 2-, achieving a linear detection range of 60-300 nmol L-1 with a lower limit of detection of 44.31 nmol L-1. Additionally, this aptasensor was able to quantitatively detect CrO4 2- in grapes and broccoli within 40 min, with spike recovery rates ranging from 89.22% to 108.05%. The designed fluorometric aptasensor exhibited high selectivity and could detect CrO4 2- in real samples without sample processing or target pre-enrichment. CONCLUSION: The aptasensor demonstrated its potential as a reliable tool for monitoring Cr(VI) contamination in fruit and vegetable products. © 2024 Society of Chemical Industry.

3.
J Food Sci ; 89(4): 2450-2464, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462851

RESUMEN

Fermented foods have shown promise in preventing or treating ulcerative colitis (UC) via regulating intestinal flora and correcting metabolic disorders. However, the prevention effect of fermented Wallace melon juice (FMJ) on UC is unclear. In this study, the effects of FMJ on dextran sodium sulfate (DSS)-induced UC were investigated via 16S rRNA sequencing and non-targeted metabolomics. The results showed that FMJ was effective in alleviating the symptoms of UC, reducing histological damage and oxidative stress, decreasing the levels of pro-inflammatory cytokines. After FMJ treatment, the level of propionic acid, butyric acid, and valeric acid increased by 14.1%, 44.4%, and 52.4% compared to DSS-induced UC mice. Meanwhile, the levels of harmful bacteria such as Oscillospira, Bacteroidetes, and Erysipelotrichaceae and Clostridium decreased, while the levels of beneficial bacteria such as Akkermansia, Lactobacillus, and Bifidobacterium increased. Fecal metabolomics analysis identified 31 differential metabolites, which could regulate metabolic disorders in UC mice by controlling the primary bile acid biosynthesis, purine metabolism, and pantothenate and CoA biosynthesis pathway. Additionally, the abundances of butyric acid, bile acids, and pantothenic acid were positively correlated with Allobaculum, Bifidobacterium, and other beneficial bacteria (R2 > 0.80, p < 0.01). The results indicated that FMJ played a role in regulating the structure of intestinal flora, which in turn helped in repairing metabolic disorders and alleviated colitis inflammation.


Asunto(s)
Colitis Ulcerosa , Colitis , Microbioma Gastrointestinal , Enfermedades Metabólicas , Animales , Ratones , Lactobacillus , Colitis Ulcerosa/inducido químicamente , Sulfato de Dextran/efectos adversos , ARN Ribosómico 16S , Ácido Butírico , Bifidobacterium , Firmicutes , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Colon
4.
Food Chem ; 447: 139006, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38492305

RESUMEN

Pancreatic lipase (PL) and cholesterol esterase (CE) are vital digestive enzymes that regulate lipid digestion. Three bioactive peptides (LFCMH, RIPAGSPF, YFRPR), possessing enzyme inhibitory activities, were identified in the seed proteins of R. roxburghii. It is hypothesized that these peptides could inhibit the activities of these enzymes by binding to their active sites or altering their conformation. The results showed that LFCMH exhibited superior inhibitory activity against these enzymes compared to the other peptides. The inhibition mechanisms of the three peptides were identified as either competitive or mixed, according to inhibition models. Further studies have shown that peptides could bind to the active sites of enzymes, thus affecting their spatial conformation and restricting substrate entry into the active site. Molecular simulation further proved that hydrogen bonds and hydrophobic interactions played a vital role in the binding of peptides to enzymes. This study enriches our understanding of interaction mechanisms of peptides on PL and CE.


Asunto(s)
Inhibidores Enzimáticos , Esterol Esterasa , Inhibidores Enzimáticos/farmacología , Lipasa/química , Péptidos/farmacología , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA