Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 344: 140389, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37832887

RESUMEN

Integrated recycling of solid waste containing heavy metals is a critical environmental challenge. In this study, a green solution to reduce heavy metal leaching from solid waste is demonstrated by combining contaminated soil, industrial sludge and lithium slag in pairs to produce lightweight aggregates (LWAs). The physical properties and heavy metal leaching behavior of LWA samples were systematically investigated and characterized. The results showed that industrial sludge reduced the density and water absorption of LWA, while the high content of lithium slag was detrimental to the physical properties. LWA containing 80% contaminated soil and 20% lithium slag had the lowest particle density of 1.47 g/cm3 due to the hollow structure caused by the low viscosity and violent generation of SO2. LWAs with lithium slag leached excessive Cu and Cr relatively, while heavy metals were immobilized well in LWAs with contaminated soil and industrial sludge as the main components. Because the flux components of industrial sludge could enhance the encapsulation of heavy metals by glass phase. In addition, the co-immobilization of multiple heavy metals was observed in the spinel phase. This study provides an efficient and safe method for the synergistic recycling of solid waste.


Asunto(s)
Metales Pesados , Residuos Sólidos , Aguas del Alcantarillado/química , Litio , Metales Pesados/análisis , Suelo
2.
Materials (Basel) ; 14(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34361439

RESUMEN

This work studied the thermophysical properties of Mg-24%Cu, Mg-31%Cu, and Mg-45%Cu (wt.%) alloys to comprehensively consider the possibility of using them as thermal energy storage (TES) phase change materials (PCMs) used at high temperatures. The microstructure, phase composition, phase change temperatures, and enthalpy of these alloys were investigated by an electron probe micro analyzer (EPMA), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The XRD and EPMA results indicated that the binary eutectic phase composed of α-Mg and Mg2Cu exists in the microstructure of the prepared Mg-Cu series alloys. The microstructure of Mg-24%Cu and Mg-31%Cu is composed of α-Mg matrix and binary eutectic phases, and Mg-45%Cu is composed of primary Mg2Cu and binary eutectic phases. The number of eutectic phases is largest in Mg-31%Cu alloy. The DSC curves indicated that the onset melting temperature of Mg-24%Cu, Mg-31%Cu, and Mg-45%Cu alloys were 485, 486, and 485 °C, and the melting enthalpies were 152, 215, and 91 J/g. Thermal expansion and thermal conductivity were also determined, revealing that the Mg-Cu alloys had a low linear thermal expansion coefficient and high thermal conductivity with respect to increasing temperatures. In conclusion, the thermal properties demonstrated that the Mg-Cu alloys can be considered as a potential PCM for TES.

3.
Materials (Basel) ; 14(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203586

RESUMEN

This study focuses on the characterization of eutectic alloy, Mg-25%Cu-15%Zn with a phase change temperature of 452.6 °C, as a phase change material (PCM) for thermal energy storage (TES). The phase composition, microstructure, phase change temperature and enthalpy of the alloy were investigated after 100, 200, 400 and 500 thermal cycles. The results indicate that no considerable phase transformation and structural change occurred, and only a small decrease in phase transition temperature and enthalpy appeared in the alloy after 500 thermal cycles, which implied that the Mg-25%Cu-15%Zn eutectic alloy had thermal reliability with respect to repeated thermal cycling, which can provide a theoretical basis for industrial application. Thermal expansion and thermal conductivity of the alloy between room temperature and melting temperature were also determined. The thermophysical properties demonstrated that the Mg-25%Cu-15%Zn eutectic alloy can be considered a potential PCM for TES.

4.
Waste Manag ; 118: 131-138, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32892090

RESUMEN

The preparation of lightweight aggregate (LWA) by high-temperature sintering is a promising method for recycling solid waste safely, especially for solidifying heavy metals effectively. The main aim of this research was to systematically evaluate the effects of the flux components on LWA, including Na2O, MgO, CaO, and Fe2O3. The physical properties and chromium solidification mechanism of LWA were characterized and analyzed. The results showed that the addition of Na facilitated LWA preparation and Cr solidification, whereas Ca, Mg, and Fe were deleterious to some extent. Further analysis indicated that increasing the Fe2O3 content was not conducive to the reduction of Cr because its decomposition reaction creates an oxygen-rich environment. The results of this research could provide a meaningful guide for regulating the composition of raw materials for the production of LWA to treat industrial Cr-containing solid waste.


Asunto(s)
Metales Pesados , Aguas del Alcantarillado , Calor , Metales Pesados/análisis , Reciclaje , Residuos Sólidos
5.
Materials (Basel) ; 12(1)2018 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-30583548

RESUMEN

:Polyvinyl alcohol (PVA) fiber was proposed to enhance the mechanical performance of engineered cementitious composite in this research. A mixture of engineered cementitious composite with better expected performance was made by adding 2% PVA fiber. Mechanics tests, including pressure resistance, fracture resistance, and ultimate tensile strength, were conducted. They reveal that the engineered cementitious composites not only exhibit good pressure resistance, but they also exhibit excellent fracture resistance and strain capability against tensile stress through mechanics tests, including pressure resistance, fracture resistance, and ultimate tensile resistance. To further improve the engineered composites' ductility, attempts to modify the performance of the PVA fiber surface have been made by using a vinyl acetate (VAE) emulsion, a butadiene⁻styrene emulsion, and boric anhydride. Results indicated that the VAE emulsion achieved the best performance improvement. Its use in fiber pre-processing enables the formation of a layer of film with weak acidity, which restrains the hydration of adjacent gel materials, and reduces the strength of transitional areas of the fiber/composite interface, which restricts fiber slippage and pulls out as a result of its growth in age, and reduces hydration levels. Research illustrates that the performance-improvement processing that is studied not only improves the strain of the engineered cementitious composites, but can also reduce the attenuation of the strain against tensile stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA