Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 127
1.
Chemistry ; : e202400945, 2024 May 01.
Article En | MEDLINE | ID: mdl-38690799

The performance of lithium-sulfur batteries is compromised by the loss of sulfur as dissolved polysulfides in the electrolyte and consequently the polysulfide redox shutting effect. Accelerating the conversion kinetics of polysulfide intermediates into sulfur or lithium sulfide through electrocatalysis has emerged as a root-cause solution. Co-N-C composite electrocatalyst is commonly used for this purpose. It is illustrated here that how the effectiveness can be improved by modulating the coordination chemistry of Co-N-C catalytic sites through introducing Ru species (RuCo-NC). The well-dispersed Ru in the Co-NC carbon matrix altered the total charge distribution over the Co-N-C catalytic sites and led to the formation of electron-rich Co-N, which is highly active for the polysulfide conversion reactions. Using Ru to modulate the electronic structure in the Co-N-C configuration and the additional catalytic sites over the Ru-Nx species can manifest optimal adsorption behavior of polysulfides. Consequently, the sulfur cathode with RuCo-NC can reduce the capacity fade rate from 0.11 % per cycle without catalyst (initial capacity of 701 mAh g-1) to 0.054 % per cycle (initial capacity of 1074 mAh g-1) over 400 cycles at 0.2 C rate. The results of this study provide the evidence for a feasible catalyst modification strategy for the polysulfide electrocatalysis.

2.
J Am Chem Soc ; 146(18): 12681-12690, 2024 May 08.
Article En | MEDLINE | ID: mdl-38652868

Lithium (Li) metal solid-state batteries feature high energy density and improved safety and thus are recognized as promising alternatives to traditional Li-ion batteries. In practice, using Li metal anodes remains challenging because of the lack of a superionic solid electrolyte that has good stability against reduction decomposition at the anode side. Here, we propose a new electrolyte design with an antistructure (compared to conventional inorganic structures) to achieve intrinsic thermodynamic stability with a Li metal anode. Li-rich antifluorite solid electrolytes are designed and synthesized, which give a high ionic conductivity of 2.1 × 10-4 S cm-1 at room temperature with three-dimensional fast Li-ion transport pathways and demonstrate high stability in Li-Li symmetric batteries. Reversible full cells with a Li metal anode and LiCoO2 cathode are also presented, showing the potential of Li-rich antifluorites as Li metal-compatible solid electrolytes for high-energy-density solid-state batteries.

3.
Angew Chem Int Ed Engl ; : e202400144, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38624087

Li-rich antiperovskite (LiRAP) hydroxyhalides are emerging as attractive solid electrolyte (SEs) for all-solid-state Li metal batteries (ASSLMBs) due to their low melting point, low cost, and ease of scaling-up. The incorporation of rotational polyanions can reduce the activation energy and thus improve the Li ion conductivity of SEs. Herein, we propose a ternary rotational polyanion coupling strategy to fasten the Li ion conduction in tetrafluoroborate (BF4-) ion doped LiRAP Li2OHCl. Assisted by first-principles calculation, powder X-ray diffraction, solid-state magnetic resonance and electrochemical impedance spectra, it is confirmed that Li ion transport in BF4- ion doped Li2OHCl is strongly associated with the rotational coupling among OH-, BF4- and Li2-O-H octahedrons, which enhances the Li ion conductivity for more than 1.8 times with the activation energy lowering 0.03 eV. This work provides a new perspective to design high-performance superionic conductors with multi-polyanions.

4.
J Colloid Interface Sci ; 662: 1026-1032, 2024 May 15.
Article En | MEDLINE | ID: mdl-38387364

The investigation of methane hydrate equilibrium conditions is crucial for comprehending the occurrence of methane hydrate in marine sediments. In this study, the liquid-hydrate-vapor equilibrium condition of methane hydrate in montmorillonite and kaolinite suspensions in the presence of glycine was investigated through differential scanning calorimetry experiments. The results indicated that glycine inhibited the phase equilibrium of methane hydrate. The phase equilibrium conditions of methane hydrate in kaolinite suspension closely resembled those in pure water. In contrast, calcium montmorillonite hindered the phase equilibrium of methane hydrate owing to the presence of Ca2+. The phase equilibrium conditions of methane hydrate in kaolinite suspension with the addition of glycine were similar to those in glycine solution. The inhibitory effect of calcium montmorillonite on the phase equilibrium condition of methane hydrate intensified with the addition of glycine. Furthermore, density functional theory simulations indicated that glycine significantly reduced the binding energy between montmorillonite layers and Ca2+, potentially mitigating the inhibitory effect of Ca2+ on methane hydrate formation under suitable glycine concentrations. The diverse equilibrium conditions of methane hydrate, influenced by the types of clay minerals, salt ions, and organic matters, may play a critical role in the formation and occurrence of natural gas hydrates in marine environments, warranting exploration in future studies.

5.
Inorg Chem ; 63(7): 3418-3427, 2024 Feb 19.
Article En | MEDLINE | ID: mdl-38323573

The development of cutting-edge solid-state electrolytes (SSEs) entails a deep understanding of the underlying correlation between the structure and ionic conductivity. Generally, the structure of SSEs encompasses several interconnected crystal parameters, and their collective influence on Li+ transport can be challenging to discern. Here, we systematically investigate the structure-function relationship of halide spinel LixMgCl2+x (2 ≥ x ≥ 1) SSEs. A nonmonotonic trend in the ionic conductivity of LixMgCl2+x SSEs has been observed, with the maximum value of 8.69 × 10-6 S cm-1 achieved at x = 1.4. The Rietveld refinement analysis, based on neutron diffraction data, has revealed that the crystal parameters including cell parameters, Li+ vacancies, Debye-Waller factor, and Li-Cl bond length assume diverse roles in influencing ionic conductivity of LixMgCl2+x at different stages within the range of x values. Besides, mechanistic analysis demonstrates Li+ transport along three-dimensional pathways, which primarily governs the contribution to ionic conductivity of LixMgCl2+x SSEs. This study has shed light on the collective influence of crystal parameters on Li+ transport behaviors, providing valuable insights into the intricate relationship between the structure and ionic conductivity of SSEs.

6.
Int J Biol Macromol ; 261(Pt 2): 129829, 2024 Mar.
Article En | MEDLINE | ID: mdl-38296134

Three-dimensional interpenetrating and hierarchically porous carbon material is an efficient catalyst support in water remediation and it is still a daunting challenge to establish the relationship between hierarchically porous structure and catalytic degradation performance. Herein, a highly porous silica (SiO2)/cellulose-based carbon aerogel with iron-based catalyst (FexOy) was fabricated by in-situ synthesis, freeze-drying and pyrolysis, where the addition of SiO2 induced the hierarchically porous morphology and three-dimensional interpenetrating sheet-like network with nitrogen doping. The destruction of cellulose crystalline structure by SiO2 and the iron-catalyzed breakdown of glycosidic bonds synergistically facilitated the formation of electron-rich graphite-like carbon skeleton. The unique microstructure is confirmed to be favorable for the diffusion of reactants and electron transport during catalytic process, thus boosting the catalytic degradation performance of carbon aerogels. As a result, the catalytic degradation efficiency of tetracycline under light irradiation by adding only 5 mg of FexOy/SiO2 cellulose carbon aerogels was as high as 90 % within 60 min, demonstrating the synergistic effect of photocatalysis and Fenton reaction. This ingenious structure design provides new insight into the relationship between hierarchically porous structure of carbon aerogels and their catalytic degradation performance, and opens a new avenue to develop cellulose-based carbon aerogel catalysts with efficient catalytic performance.


Carbon , Heterocyclic Compounds , Carbon/chemistry , Iron/chemistry , Silicon Dioxide , Cellulose/chemistry , Porosity , Tetracycline/chemistry , Anti-Bacterial Agents , Catalysis
7.
Small ; 20(9): e2306187, 2024 Mar.
Article En | MEDLINE | ID: mdl-37857586

Low Coulombic efficiency (CE) and safety issues are huge problems that hinder the practical application of Li metal anodes. Constructing Li host structures decorated with functional species can restrain the growth of Li dendrites and alleviate the great volume change. Here, a 3D porous carbonaceous skeleton modified with rich lithiophilic groups (Zn, ZnO, and Zn(CN)2 ) is synthesized as a Li host via one-step carbonization of a triazole-containing metal-organic framework. The nano lithiophilic groups serve as preferred sites for Li nucleation and growth, regulating a uniform Li+ flux and uniform current density distribution. In addition, the 3D porous network functions as a Li reservoir that provides rich internal space to store Li, thus alleviating the volumetric expansion during Li plating/stripping process. Thanks to these component and structural merits, an ultra-low overpotential for Li deposition is achieved, together with high CE of over 99.5% for more than 500 cycles at 1 mA cm-2 and 1 mAh cm-2 in half cells. The symmetric cells exhibit a prolonged cycling of 900 h at 1 mA cm-2 . The full cells by coupling Zn/ZnO/Zn(CN)2 @C-Li anode with LiFePO4 cathode deliver a high capacity retention of 94.3% after 200 cycles at 1 C.

8.
Medicine (Baltimore) ; 102(48): e36239, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-38050240

Treatment failure in patients with liver hepatocellular carcinoma (LIHC) is primarily caused by tumor progression and therapy resistance. Tumor immunity plays a crucial role in regulating the homeostasis of cells through the process of programmed cell death (PCD). However, the expression profile and clinical significance of PCD-related genes in LIHC require further investigation. In this study, we analyzed twelve commonly observed PCD patterns to construct a prognostic model. We collected RNA-seq data, genomics, and clinical information from TCGA-LIHC and GSE14520 cohorts to validate the prognostic gene signature. We discovered 75 PCD-related differentially expressed genes (DEGs) with prognostic significance in LIHC. Using these genes, we constructed a PCD-related score (PCDscore) with an 11-gene signature through LASSO COX regression analysis. Validation in the GSE14520 cohort demonstrated that LIHC patients with high PCDscore had poorer prognoses. Unsupervised clustering based on the 11 model genes revealed 3 molecular subtypes of LIHC with distinct prognoses. By incorporating PCDscore with clinical features, we constructed a highly predictive nomogram. Additionally, PCDscore was correlated with immune checkpoint genes and immune cell infiltration. LIHC patients with high PCDscore exhibited sensitivity to common chemotherapy drugs (such as cisplatin and docetaxel). To summarize, our study developed a novel PCDscore model that comprehensively analyzed different cell death modes, providing an accurate prediction of clinical prognosis and drug sensitivity for LIHC patients.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Tumor Microenvironment/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Apoptosis , Prognosis
9.
Nat Commun ; 14(1): 6807, 2023 Oct 26.
Article En | MEDLINE | ID: mdl-37884502

Solid-state electrolytes with high ionic conductivities are crucial for the development of all-solid-state lithium batteries, and there is a strong correlation between the ionic conductivities and underlying lattice structures of solid-state electrolytes. Here, we report a lattice manipulation method of replacing [Li2OH]+ clusters with potassium ions in antiperovskite solid-state electrolyte (Li2OH)0.99K0.01Cl, which leads to a remarkable increase in ionic conductivity (4.5 × 10‒3 mS cm‒1, 25 °C). Mechanistic analysis indicates that the lattice manipulation method leads to the stabilization of the cubic phase and lattice contraction for the antiperovskite, and causes significant changes in Li-ion transport trajectories and migration barriers. Also, the Li||LiFePO4 all-solid-state battery (excess Li and loading of 1.78 mg cm‒2 for LiFePO4) employing (Li2OH)0.99K0.01Cl electrolyte delivers a specific capacity of 116.4 mAh g‒1 at the 150th cycle with a capacity retention of 96.1% at 80 mA g‒1 and 120 °C, which indicates potential application prospects of antiperovskite electrolyte in all-solid-state lithium batteries.

10.
Natl Sci Rev ; 10(11): nwad238, 2023 Nov.
Article En | MEDLINE | ID: mdl-37854950

Lithium batteries have been essential technologies and become an integral part of our daily lives, powering a range of devices from phones to electric vehicles. To fully understand and optimize the performance of lithium batteries, it is necessary to investigate their internal states and processes through various characterization methods. Neutron imaging has been an indispensable complementary characterization technique to X-ray imaging or electron microscopy because of the unique interaction principle between neutrons and matter. It provides particular insights into the various states of matter inside lithium batteries, including the Li+ concentration in solid electrodes, the Li plating/stripping behavior of Li-metal anodes, the Li+ diffusion in solid ionic conductors, the distribution of liquid electrolytes and the generation of gases. This review aims to highlight the capabilities and advantages of neutron imaging in characterizing lithium batteries, as well as its current state of application in this field. Additionally, we discuss the potential of neutron imaging to contribute to the ongoing development of advanced batteries through its ability to visualize internal evolution.

11.
Appl Opt ; 62(15): 3829-3838, 2023 May 20.
Article En | MEDLINE | ID: mdl-37706691

Due to the advantages of being non-contact, non-destructive, highly efficient, and low in cost, scatterometry has emerged as a powerful technique for nanostructure metrology. In this paper, we propose an angle-resolved scatterometer composed of a scattered light acquisition channel and a spatial imaging channel, which is capable of detecting multi-order diffracted light in a single measurement. Since the high numerical aperture objective lens is usually employed in an angle-resolved scatterometer, the polarization effect of the objective lens introduced by the non-normal incidence and installation stress should be considered. An in-situ calibration method for the objective lens's polarization effects is proposed, in which a known analyzer is appended to the output light path to enable the extraction of the ellipsometric parameters of isotropic samples. Then the polarization effect of the objective lens can be determined in-situ by fitting the measured ellipsometric parameters to the calculated ones. With the objective lens polarization effect being considered, significant improvements in the accuracy and repeatability precision can be achieved in the metrology of the film thickness and grating topography parameters.

12.
Opt Express ; 31(17): 27797-27809, 2023 Aug 14.
Article En | MEDLINE | ID: mdl-37710847

Mask model is a critical part of computational lithography (CL). Owing to the significant 3D mask effects, it is challenging to accurately and efficiently calculate the near field of extreme ultraviolet (EUV) masks with complex patterns. Therefore, a method based on the modified Born series (MBS) was introduced for EUV mask modeling. With comparable accuracy, the MBS method was two orders of magnitude faster than the finite-difference time-domain method for the investigated examples. Furthermore, the time required for MBS was further reduced when the mask pattern was slightly changed. The proposed method shows great potential for constructing an accurate 3D mask model in EUV CL with high efficiency.

13.
Front Chem ; 11: 1230187, 2023.
Article En | MEDLINE | ID: mdl-37547908

Solid-state electrolytes (SSEs) hold the key position in the progress of cutting-edge all-solid-state batteries (ASSBs). The ionic conductivity of solid-state electrolytes is linked to the presence of both amorphous and crystalline phases. This study employs the synthesis method of mechanochemical milling on binary xLi2S-(100-x)LiI system to investigate the effect of amorphization on its ionic conductivity. Powder X-ray diffraction (PXRD) shows that the stoichiometry of Li2S and LiI has a significant impact on the amorphization of xLi2S-(100-x)LiI system. Furthermore, the analysis of electrochemical impedance spectroscopy (EIS) indicates that the amorphization of xLi2S-(100-x)LiI system is strongly correlated with its ionic conductivity, which is primarily attributed to the effect of grain boundary resistance. These findings uncover the latent connections between amorphization, grain boundary resistance, and ionic conductivity, offering insight into the design of innovative amorphous SSEs.

14.
Int J Mol Sci ; 24(13)2023 Jul 03.
Article En | MEDLINE | ID: mdl-37446203

Plant height, petiole length, and the angle of the leaf petiole and branch angles are crucial traits determining plant architecture and yield in soybean (Glycine max L.). Here, we characterized a soybean mutant with super-short petioles (SSP) and enlarged petiole angles (named Gmssp) through phenotypic observation, anatomical structure analysis, and bulk sequencing analysis. To identify the gene responsible for the Gmssp mutant phenotype, we established a pipeline involving bulk sequencing, variant calling, functional annotation by SnpEFF (v4.0e) software, and Integrative Genomics Viewer analysis, and we initially identified Glyma.11G026400, encoding a homolog of Anaphase-promoting complex subunit 8 (APC8). Another mutant, t7, with a large deletion of many genes including Glyma.11G026400, has super-short petioles and an enlarged petiole angle, similar to the Gmssp phenotype. Characterization of the t7 mutant together with quantitative trait locus mapping and allelic variation analysis confirmed Glyma.11G026400 as the gene involved in the Gmssp phenotype. In Gmssp, a 4 bp deletion in Glyma.11G026400 leads to a 380 aa truncated protein due to a premature stop codon. The dysfunction or absence of Glyma.11G026400 caused severe defects in morphology, anatomical structure, and physiological traits. Transcriptome analysis and weighted gene co-expression network analysis revealed multiple pathways likely involved in these phenotypes, including ubiquitin-mediated proteolysis and gibberellin-mediated pathways. Our results demonstrate that dysfunction of Glyma.11G026400 leads to diverse functional consequences in different tissues, indicating that this APC8 homolog plays key roles in cell differentiation and elongation in a tissue-specific manner. Deciphering the molecular control of petiole length and angle enriches our knowledge of the molecular network regulating plant architecture in soybean and should facilitate the breeding of high-yielding soybean cultivars with compact plant architecture.


Anaphase , Glycine max , Glycine max/genetics , Plant Breeding , Chromosome Mapping , Phenotype
15.
PLoS One ; 18(7): e0288311, 2023.
Article En | MEDLINE | ID: mdl-37498885

In the latest research progress, deep neural networks have been revolutionized by frameworks to extract image features more accurately. In this study, we focus on an attention model that can be useful in deep neural networks and propose a simple but strong feature extraction deep network architecture, W-Net. The architecture of our W-Net network has two mutually independent path structures, and it is designed with the following advantages. (1) There are two independent effective paths in our proposed network structure, and the two paths capture more contextual information from different scales in different ways. (2) The two paths acquire different feature images, and in the upsampling approach, we use bilinear interpolation thus reducing the feature map distortion phenomenon and integrating the different images processed. (3) The feature image processing is at a bottleneck, and a hierarchical attention module is constructed at the bottleneck by reclassifying after the channel attention module and the spatial attention module, resulting in more efficient and accurate processing of feature images. During the experiment, we also tested iSAID, a massively high spatial resolution remote sensing image dataset, with further experimental data comparison to demonstrate the generality of our method for remote sensor image segmentation.


Remote Sensing Technology , Semantics , Image Processing, Computer-Assisted , Neural Networks, Computer
16.
Nat Commun ; 14(1): 4301, 2023 Jul 18.
Article En | MEDLINE | ID: mdl-37463932

CuInP2S6 with robust room-temperature ferroelectricity has recently attracted much attention due to the spatial instability of its Cu cations and the van der Waals (vdW) layered structure. Herein, we report a significant enhancement of its remanent polarization by more than 50% from 4.06 to 6.36 µC cm-2 under a small pressure between 0.26 to 1.40 GPa. Comprehensive analysis suggests that even though the hydrostatic pressure suppresses the crystal distortion, it initially forces Cu cations to largely occupy the interlayer sites, causing the spontaneous polarization to increase. Under intermediate pressure, the condensation of Cu cations to the ground state and the polarization increase due cell volume reduction compensate each other, resulting in a constant polarization. Under high pressure, the migration of Cu cations to the center of the S octahedron dominates the polarization decrease. These findings improve our understanding of this fascinating vdW ferroelectric material, and suggest new ways to improve its properties.

17.
Front Cardiovasc Med ; 10: 1163900, 2023.
Article En | MEDLINE | ID: mdl-37265570

Objective: Inflammation plays an important role in the pathophysiology of hypertension (HTN). Aggregate index of systemic inflammation (AISI), as a new inflammatory and prognostic marker has emerged recently. Our goal was to determine whether there was a relationship between HTN and AISI. Methods: We analyzed patients with HTN from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018. The primary end point was cardiovascular mortality. A total of 23,765 participants were divided into four groups according to the AISI quartile level. The association between AISI and cardiovascular mortality in patients with HTN was assessed by survival curves and Cox regression analyses based on NHANES recommended weights. Results: High levels of AISI were significantly associated with cardiovascular mortality in patients with HTN. After full adjustment for confounders, there was no significant difference in the risk of cardiovascular mortality in Q2 and Q3 compared to Q1, while Q4 (HR: 1.91, 95% CI: 1.42-2.58; P < 0.001) had a higher risk of cardiovascular mortality compared to Q1. Results remained similar in subgroup analyses stratified by age (P for interaction = 0.568), gender (P for interaction = 0.059), and obesity (P for interaction = 0.289). Conclusions: In adults with HTN, elevated AISI levels are significantly associated with an increased risk of cardiovascular mortality and may serve as an early warning parameter for poor prognosis.

18.
Brain Sci ; 13(5)2023 Apr 24.
Article En | MEDLINE | ID: mdl-37239183

The mammalian brain, with its complexity and intricacy, poses significant challenges for researchers aiming to understand its inner workings. Optical multilayer interference tomography (OMLIT) is a novel, promising imaging technique that enables the mapping and reconstruction of mesoscale all-cell brain atlases and is seamlessly compatible with tape-based serial scanning electron microscopy (SEM) for microscale mapping in the same tissue. However, currently, OMLIT suffers from imperfect coatings, leading to background noise and image contamination. In this study, we introduced a new imaging configuration using carbon spraying to eliminate the tape-coating step, resulting in reduced noise and enhanced imaging quality. We demonstrated the improved imaging quality and validated its applicability through a correlative light-electron imaging workflow. Our method successfully reconstructed all cells and vasculature within a large OMLIT dataset, enabling basic morphological classification and analysis. We also show that this approach can perform effectively on thicker sections, extending its applicability to sub-micron scale slices, saving sample preparation and imaging time, and increasing imaging throughput. Consequently, this method emerges as a promising candidate for high-speed, high-throughput brain tissue reconstruction and analysis. Our findings open new avenues for exploring the structure and function of the brain using OMLIT images.

19.
Adv Sci (Weinh) ; 10(19): e2205479, 2023 Jul.
Article En | MEDLINE | ID: mdl-37129311

Nitride perovskite LaWN3 has been predicted to be a promising ferroelectric material with unique properties for diverse applications. However, due to the challenging sample preparation at ambient pressure, the crystal structure of this nitride remains unsolved, which results in many ambiguities in its properties. Here, the authors report a comprehensive study of LaWN3 based on high-quality samples synthesized by a high-pressure method, leading to a definitive resolution of its crystal structure involving nitrogen deficiency. Combined with theoretical calculations, these results show that LaWN3 adopts an orthorhombic Pna21 structure with a polar symmetry, possessing a unique atomic polarization along the c-axis. The associated atomic polar distortions in LaWN3 are driven by covalent hybridization of W: 5d and N: 2p orbitals, opening a direct bandgap that explains its semiconducting behaviors. The structural stability and electronic properties of this nitride are also revealed to be closely associated with its nitrogen deficiency. The success in unraveling the structural and electronic ambiguities of LaWN3 would provide important insights into the structures and properties of the family of nitride perovskites.

20.
Front Physiol ; 14: 1074672, 2023.
Article En | MEDLINE | ID: mdl-37206362

Background: Hypertension is one of the main causes of cardiovascular death. Inflammation was considered influential factors of cardiovascular (CVD) death in patients with hypertension. Advanced lung cancer inflammation index (ALI) is an index to assess inflammation, few studies have investigated the relationship between advanced lung cancer inflammation index and cardiovascular death in hypertensive patients. Objective: The aim of this study was to investigate the association between advanced lung cancer inflammation index and long-term cardiovascular death in hypertensive patients. Method: Data from the National Health and Nutrition Examination Survey (NHANES) 1999-2018 with mortality follow-up through 31 December 2019 were analyzed. Advanced lung cancer inflammation index was calculated as BMI (kg/㎡) × serum albumin level (g/dL)/neutrophil to lymphocyte ratio (NLR). A total of 20,517 participants were evaluated. Patients were divided into three groups based on tertiles of advanced lung cancer inflammation index as follows: T1 (n = 6,839), T2 (n = 6,839), and T3 (n = 6,839) groups. The relationship between advanced lung cancer inflammation index and long-term cardiovascular death was assessed by survival curves and Cox regression analysis based on the NHANES recommended weights. Results: The median advanced lung cancer inflammation index value in this study was 61.9 [44.4, 84.6]. After full adjustment, the T2 group (hazard ratio [HR]: 0.59, 95% confidence interval [CI]: 0.50-0.69; p < 0.001) and T3 group (HR: 0.48, 95% CI: 0.39-0.58; p < 0.001) were found to have a significantly lower risk of cardiovascular death compared to the T1 group. Conclusion: High levels of advanced lung cancer inflammation index were associated with reduced risk of cardiovascular death in hypertensive patients.

...