Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 257: 119349, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38844029

RESUMEN

Integrated aquaculture wastewater treatment systems (IAWTSs) are widely used in treating aquaculture wastewater with the aeration-microalgae unit serving as an important component. In this study, we artificially constructed an IAWTS and applied two aeration-microalgae methods: ordinary aeration or ozone nanobubbles (ONBs) with microalgae (Nannochloropsis oculata). The impact of N.oculata and ONBs on the removal performance of nutrients and the underlying micro-ecological mechanisms were investigated using 16S rRNA gene amplicon sequencing. The results demonstrated that the combined use of ONBs and N.oculata exhibited superior purification effects with 78.25%, 76.59% and 86.71% removal of CODMn, TN and TP. N.oculata played a pivotal role as the primary element in wastewater purification, while ONBs influenced nutrient dynamics by affecting both N.oculata and bacterial communities. N.oculata actively shaped bacterial communities, with a specific focus on nitrogen and phosphorus cycling in the micro-environment remodeled by ONBs. Rare bacterial communities displayed heightened activity in response to the changes in N.oculata, ONBs, and nutrient levels. These findings provide a novel approach to improve the technological processes the IAWTS, contributing to the advancement of sustainable aquaculture practices by offering valuable insights into wastewater purification efficiency and micro-ecological mechanisms.

2.
Microorganisms ; 12(5)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38792842

RESUMEN

In the modern era of Aquaculture, biofloc technology (BFT) systems have attained crucial attention. This technology is used to reduce water renewal with the removal of nitrogen and to provide additional feed. In BFT, microorganisms play a crucial role due to their complex metabolic properties. Pathogens can be controlled through multiple mechanisms using probiotics, which can promote host development and enhance the quality of the culture environment. During culturing in a biofloc technology system, the supplementation of microalgae and its accompanying bacteria plays a beneficial role in reducing nitrogenous compounds. This enhances water quality and creates favorable environmental conditions for specific bacterial groups, while simultaneously reducing the dependency on carbon sources with higher content. The fluctuations in the bacterial communities of the intestine are closely associated with the severity of diseases related to shrimp and are used to evaluate the health status of shrimp. Overall, we will review the microbes associated with shrimp culture in BFT and their effects on shrimp growth. We will also examine the microbial impacts on the growth performance of L. vannamei in BFT, as well as the close relationship between probiotics and the intestinal microbes of L. vannamei.

3.
Water Res ; 256: 121626, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38642534

RESUMEN

Resource patchiness caused by external events breaks the continuity and homogeneity of resource distribution in the original ecosystem. For local organisms, this leads to drastic changes in the availability of resources, breaks down the co-existence of species, and reshuffles the local ecosystem. West Lake is a freshwater lake with resource patchiness caused by multiple exogenous disturbances that has strong environmental heterogeneity that prevents clear observation of seasonal changes in the microbial communities. Despite this, the emergence of rhythmic species in response to irregular changes in the environment has been helpful for observing microbial communities dynamics in patchy ecosystems. We investigated the ecological mechanisms of seasonal changes in microbial communities in West Lake by screening rhythmic species based on the ecological niche and modern coexistence theories. The results showed that rhythmic species were the dominant factors in microbial community changes and the effects of most environmental factors on the microbial community were indirectly realised through the rhythmic species. Random forest analyses showed that seasonal changes in the microbial community were similarly predicted by the rhythmic species. In addition, we incorporated species interactions and community phylogenetic patterns into stepwise multiple regression analyses, the results of which indicate that ecological niches and species fitness may drive the coexistence of these subcommunities. Thus, this study extends our understanding of seasonal changes in microbial communities and provides new ways for observing seasonal changes in microbial communities, especially in ecosystems with resource patches. Our study also show that combining community phylogenies with co-occurrence networks based on ecological niches and modern coexistence theory can further help us understand the ecological mechanisms of interspecies coexistence.


Asunto(s)
Ecosistema , Lagos , Estaciones del Año , Lagos/microbiología , Filogenia , Microbiota
4.
Environ Res ; 252(Pt 1): 118864, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38574987

RESUMEN

With the continuous development of intensive mariculture, the application of the integrated bioremediation system of aquaculture wastewater (IBSAW) is increasingly promoted. However, the process and nutrients removal performance of the IBSAW need to be further optimized due to its immature technologies. In this study, exogenous compound bacteria (ECB) were added to IBSAW to investigate its pollutants removal efficiency and the relevant mechanisms. High-throughput sequencing and Geochip gene array were used to analyze the correlation between nutrients and bacteria, and the abundance of N and P cycling genes were quantified. Multivariable statistics, dimensionality reduction analysis, and network analysis were applied to explore the mechanisms of IBSAW operation. The results showed that the nutrients decreased significantly after adding ECB, with the brush treatment group significantly outperforming the ceramsite in removing NO3- and PO43-. Ceramsite has an advantage in removing NO2--N. The addition of ECB and different substrates significantly affected the composition of bacterial communities. The contents of nosZ and nirKS related to denitrification in the treatment groups were significantly higher than those in the control group, and the contents in the brush treatment group were significantly higher than that of ceramsite. The biomarkers Psychroserpens and Ruegeria on the biofilm of the brush treatment group were positively correlated with nirKS, while Mycobacterium, Erythrobacter and Paracoccus, Pseudohaliea in the ceramsite group were positively correlated with nirS and nirK, respectively. Therefore, it is speculated that the ECB significantly promoted the increase of denitrification bacteria by affecting the composition of bacterial communities, and the ECB combined with functional genera improved the efficiency of nutrients removal in the system. This study provided a reference for understanding the process and mechanism of nutrients removal, optimizing the wastewater purification technology of the IBSAW and improving the performance of the system.


Asunto(s)
Bacterias , Biodegradación Ambiental , Aguas Residuales , Bacterias/genética , Bacterias/metabolismo , Aguas Residuales/microbiología , Aguas Residuales/química , Fósforo/metabolismo , Acuicultura , Nitrógeno/metabolismo , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis
5.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542459

RESUMEN

The lipoxygenases (LOXs) are non-heme iron-containing dioxygenases that play an important role in plant growth and defense responses. There is scarce knowledge regarding the LOX gene family members and their involvement in biotic and abiotic stresses in potato. In this study, a total of 17 gene family members (StLOXs) in potato were identified and clustered into three subfamilies: 9-LOX type I, 13-LOX type I, and 13-LOX type II, with eleven, one, and five members in each subfamily based on phylogenetic analysis. By exploiting the RNA-seq data in the Potato Genome Sequencing Consortium (PGSC) database, the tissue-specific expressed and stress-responsive StLOX genes in double-monoploid (DM) potato were obtained. Furthermore, six candidate StLOX genes that might participate in drought and salt response were determined via qPCR analysis in tetraploid potato cultivars under NaCl and PEG treatment. Finally, the involvement in salt stress response of two StLOX genes, which were significantly up-regulated in both DM and tetraploid potato under NaCl and PEG treatment, was confirmed via heterologous expression in yeast under salt treatment. Our comprehensive analysis of the StLOX family provides a theoretical basis for the potential biological functions of StLOXs in the adaptation mechanisms of potato to stress conditions.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Filogenia , Tetraploidía , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica
6.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396758

RESUMEN

The C3HC4 RING finger gene (RING-HC) family is a zinc finger protein crucial to plant growth. However, there have been no studies on the RING-HC gene family in potato. In this study, 77 putative StRING-HCs were identified in the potato genome and grouped into three clusters based on phylogenetic relationships, the chromosome distribution, gene structure, conserved motif, gene duplication events, and synteny relationships, and cis-acting elements were systematically analyzed. By analyzing RNA-seq data of potato cultivars, the candidate StRING-HC genes that might participate in tissue development, abiotic stress, especially drought stress, and anthocyanin biosynthesis were further determined. Finally, a StRING-HC gene (Soltu.DM.09G017280 annotated as StRNF4-like), which was highly expressed in pigmented potato tubers was focused on. StRNF4-like localized in the nucleus, and Y2H assays showed that it could interact with the anthocyanin-regulating transcription factors (TFs) StbHLH1 of potato tubers, which is localized in the nucleus and membrane. Transient assays showed that StRNF4-like repressed anthocyanin accumulation in the leaves of Nicotiana tabacum and Nicotiana benthamiana by directly suppressing the activity of the dihydroflavonol reductase (DFR) promoter activated by StAN1 and StbHLH1. The results suggest that StRNF4-like might repress anthocyanin accumulation in potato tubers by interacting with StbHLH1. Our comprehensive analysis of the potato StRING-HCs family contributes valuable knowledge to the understanding of their functions in potato development, abiotic stress, hormone signaling, and anthocyanin biosynthesis.


Asunto(s)
Antocianinas , Solanum tuberosum , Antocianinas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Filogenia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Biology (Basel) ; 13(1)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38275730

RESUMEN

Intensive shrimp farming may lead to adverse environmental consequences due to discharged water effluent. Inoculation of microalgae can moderate the adverse effect of shrimp-farming water. However, how bacterial communities with different lifestyles (free-living (FL) and particle-attached (PA)) respond to microalgal inoculation is unclear. In the present study, we investigated the effects of two microalgae (Nannochloropsis oculata and Thalassiosira weissflogii) alone or in combination in regulating microbial communities in shrimp-farmed water and their potential applications. PERMANOVA revealed significant differences among treatments in terms of time and lifestyle. Community diversity analysis showed that PA bacteria responded more sensitively to different microalgal treatments than FL bacteria. Redundancy analysis (RDA) indicated that the bacterial community was majorly influenced by environmental factors, compared to microalgal direct influence. Moreover, the neutral model analysis and the average variation degree (AVD) index indicated that the addition of microalgae affected the bacterial community structure and stability during the stochastic process, and the PA bacterial community was the most stable with the addition of T. weissflogii. Therefore, the present study revealed the effects of microalgae and nutrient salts on bacterial communities in shrimp aquaculture water by adding microalgae to control the process of community change. This study is important for understanding the microbial community assembly and interpreting complex interactions among zoo-, phyto-, and bacterioplankton in shrimp aquaculture ecosystems. Additionally, these findings may contribute to the sustainable development of shrimp aquaculture and ecosystem conservation.

8.
BMC Genomics ; 25(1): 10, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166714

RESUMEN

BACKGROUND: Plant U-box (PUB) E3 ubiquitin ligases have vital effects on various biological processes. Therefore, a comprehensive and systematic identification of the members of the U-box gene family in potato will help to understand the evolution and function of U-box E3 ubiquitin ligases in plants. RESULTS: This work identified altogether 74 PUBs in the potato (StPUBs) and examined their gene structures, chromosomal distributions, and conserved motifs. There were seventy-four StPUB genes on ten chromosomes with diverse densities. As revealed by phylogenetic analysis on PUBs within potato, Arabidopsis, tomato (Solanum lycopersicum), cabbage (Brassica oleracea), rice (Oryza sativa), and corn (Zea mays), were clustered into eight subclasses (C1-C8). According to synteny analysis, there were 40 orthologous StPUB genes to Arabidopsis, 58 to tomato, 28 to cabbage, 7 to rice, and 8 to corn. In addition, RNA-seq data downloaded from PGSC were utilized to reveal StPUBs' abiotic stress responses and tissue-specific expression in the doubled-monoploid potato (DM). Inaddition, we performed RNA-seq on the 'Atlantic' (drought-sensitive cultivar, DS) and the 'Qingshu NO.9' (drought-tolerant cultivar, DT) in early flowering, full-blooming, along with flower-falling stages to detect genes that might be involved in response to drought stress. Finally, quantitative real-time PCR (qPCR) was carried out to analyze three candidate genes for their expression levels within 100 mM NaCl- and 10% PEG 6000 (w/v)-treated potato plantlets for a 24-h period. Furthermore, we analyzed the drought tolerance of StPUB25 transgenic plants and found that overexpression of StPUB25 significantly increased peroxidase (POD) activity, reduced ROS (reactive oxygen species) and MDA (malondialdehyde) accumulation compared with wild-type (WT) plants, and enhancing drought tolerance of the transgenic plants. CONCLUSION: In this study, three candidate genes related to drought tolerance in potato were excavated, and the function of StPUB25 under drought stress was verified. These results should provide valuable information to understand the potato StPUB gene family and investigate the molecular mechanisms of StPUBs regulating potato drought tolerance.


Asunto(s)
Arabidopsis , Solanum tuberosum , Ubiquitina-Proteína Ligasas/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Resistencia a la Sequía , Filogenia , Sequías , Ubiquitinas/genética , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
9.
Foods ; 12(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38002232

RESUMEN

The elevated anthocyanin content of colored potatoes produces numerous health benefits in humans. However, there is a paucity of studies exploring the influence of environmental factors on anthocyanin components in colored potatoes. In our work, the Box-Behnken design was adopted to optimize anthocyanin extraction from colored potato tubers with ultrasound assistance. The response surface model was stable and reliable (R2 = 0.9775), and under optimal extraction conditions, namely an ultrasonic power of 299 W, an extraction time of 10 min, and a solid-liquid ratio of 1:30 (g/mL), the yield reached 4.33 mg/g. Furthermore, the anthocyanins of colored potato tubers grown at different altitudes were determined by high-performance liquid chromatography-mass spectrometry with optimized ultrasound-assisted extraction, the results showed that anthocyanin levels were the highest at high altitudes, whereas anthocyanins were almost undetectable at mid-altitude. Moreover, the types of anthocyanin compounds present in colored potatoes varied at different altitudes. The red clones exhibited substantial accumulation of pelargonidin across all three altitudes. In contrast, the main anthocyanins found in purple clones were malvidin, petunidin, and cyanidin. We identified the anthocyanin components with a strong correlation to the environment, thereby establishing a fundamental basis for the breeding of potato clones with high anthocyanin content.

10.
Animals (Basel) ; 13(22)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38003102

RESUMEN

The ecological functions of bacterial communities vary between particle-attached (PA) lifestyles and free-living (FL) lifestyles, and separately exploring their community assembly helps to elucidate the microecological mechanisms of shrimp rearing. Microalgal inoculation and nutrient enrichment during shrimp rearing are two important driving factors that affect rearing-water bacterial communities, but their relative contributions to the bacterial community assembly have not been evaluated. Here, we inoculated two microalgae, Nannochloropsis oculata and Thalassiosira weissflogii, into shrimp-rearing waters to investigate the distinct effects of various environmental factors on PA and FL bacterial communities. Our study showed that the composition and representative bacteria of different microalgal treatments were significantly different between the PA and FL bacterial communities. Regression analyses and Mantel tests revealed that nutrients were vital factors that constrained the diversity, structure, and co-occurrence patterns of both the PA and FL bacterial communities. Partial least squares path modeling (PLS-PM) analysis indicated that microalgae could directly or indirectly affect the PA bacterial community through nutrient interactions. Moreover, a significant interaction was detected between PA and FL bacterial communities. Our study reveals the unequal effects of microalgae and nutrients on bacterial community assembly and helps explore microbial community assembly in shrimp-rearing ecosystems.

11.
Environ Pollut ; 338: 122651, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37797925

RESUMEN

Frequent outbreaks of harmful cyanobacterial blooms and the microcystins (MCs) they produce seriously affect the survival of aquatic organisms. Interactions between gut microbiota and hosts often play crucial roles in driving the adaptation of aquatic organisms to environmental changes. In this study, we investigated the phenotypic indicators of the freshwater gastropod Bellamya aeruginosa, after uptake of Microcystis aeruginosa and explored its gut microbial composition and gut metabolites in response to toxic cyanobacterial stress. Results showed that the MCs concentration in the hepatopancreas of snails fed with toxic cyanobacteria decreased from 2.64 ± 0.14 µg·g-1 on day 7 to 1.16 ± 0.10 µg·g-1 on day 14. The compositions of the intestinal microbiota of snails fed with different algae significantly differed, and the relative abundance of gut microbes such as Lactobacillus and Sphingobium significantly increased after feeding toxic cyanobacteria. Significant differences also existed in intestinal metabolites, the relative abundance of the following metabolites significantly increased: l-proline, 5,6-DHET, stachyose, raffinose, and 3-isopropylmalate. Sankey network diagrams showing links between gut microbes and gut metabolites. The association of Lactobacillus and Sphingobium with amino acids may be related to host tolerance to toxicity, and the linkages of gut microbes with metabolites such as levan, imidazolepropionic acid, and eicosanoids may be associated with involvement in host immune responses. The association of microbes with stachyose and raffinose can help the host to regulate energy homeostasis. These results reveal the underlying mechanisms of gut microbes in the snail adaptation to toxic cyanobacterial stress. This study could be great important for gaining new insights into toxic cyanobacteria-induced changes in snail gut microbes and metabolites and their roles in snail adaptation to toxic cyanobacterial stress, and may provide important insights into the use of freshwater gastropods for the prevention and control of cyanobacterial blooms.


Asunto(s)
Cianobacterias , Microbioma Gastrointestinal , Gastrópodos , Microcystis , Animales , Rafinosa/metabolismo , Cianobacterias/metabolismo , Microcystis/metabolismo , Agua Dulce , Microcistinas/toxicidad , Microcistinas/metabolismo
12.
Sci Total Environ ; 903: 166943, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37690748

RESUMEN

With the development of global tourism, tourist boats, a significant form of anthropogenic disturbance, are having an increasingly serious impact on the structure and function of aquatic ecosystems. In this study, the effects of different intensities of tourist boat activities on the microbial communities of West lake, were investigated by high-throughput sequencing. The results showed significant differences in the composition of bacterioplankton and microeukaryotic communities between the high-intensity boat activity (HIBA) area and low-intensity boat activity (LIBA) area. Variation partitioning analysis showed that environmental factors contributed the most to microbial community variation, and the effect of boat activities on microbial communities mainly occurred through coupling with environmental factors. The contribution of boat activity to microbial community changes occupies the second place, the first being environmental factors. Co-occurrence network analyses showed that microbial communities in the HIBA area had more nodes and edges, higher connectivity and lower modularity than in the LIBA area, suggesting a more complex and stable network. Networks of associations between potential keystone taxa and environmental factors reveal the way in which boat activity affects microbial communities. The bacterial community responded strongly to environmental factors associated with boat activities, whereas the microeukaryotic community was more likely to be regulated by interspecific interactions. This also suggests that when faced with disturbances from the boat activity, microeukaryotes might exert a stronger direct resistance effect compared to bacterioplankton. These findings imply that bacterioplankton and microeukaryotes demonstrate distinct response patterns in the presence of disturbance caused by boat activity. Our research expand our understanding of the effects of boat activities on aquatic ecosystems and provide further insights into the assessment of anthropogenic disturbances in aquatic ecosystems.

13.
Toxins (Basel) ; 15(4)2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-37104190

RESUMEN

Gut microbes play a critical role in helping hosts adapt to external environmental changes and are becoming an important phenotype for evaluating the response of aquatic animals to environmental stresses. However, few studies have reported the role that gut microbes play after the exposure of gastropods to bloom-forming cyanobacteria and toxins. In this study, we investigated the response pattern and potential role of intestinal flora in freshwater gastropod Bellamya aeruginosa when exposed to toxic and non-toxic strains of Microcystis aeruginosa, respectively. Results showed that the composition of the intestinal flora of the toxin-producing cyanobacteria group (T group) changed significantly over time. The concentration of microcystins (MCs) in hepatopancreas tissue decreased from 2.41 ± 0.12 on day 7 to 1.43 ± 0.10 µg·g-1 dry weight on day 14 in the T group. The abundance of cellulase-producing bacteria (Acinetobacter) was significantly higher in the non-toxic cyanobacteria group (NT group) than that in the T group on day 14, whereas the relative abundance of MC-degrading bacteria (Pseudomonas and Ralstonia) was significantly higher in the T group than that in the NT group on day 14. In addition, the co-occurrence networks in the T group were more complex than that in the NT group at day 7 and day 14. Some genera identified as key nodes, such as Acinetobacter, Pseudomonas, and Ralstonia, showed different patterns of variation in the co-occurrence network. Network nodes clustered to Acinetobacter increased in the NT group from day 7 to day 14, whereas the interactions between Pseudomonas and Ralstonia and other bacteria almost changed from positive correlations in the D7T group to negative correlations in the D14T group. These results suggested that these bacteria not only have the ability to improve host resistance to toxic cyanobacterial stress by themselves, but they can also further assist host adaptation to environmental stress by regulating the interaction patterns within the community. This study provides useful information for understanding the role of freshwater gastropod gut flora in response to toxic cyanobacteria and reveals the underlying tolerance mechanisms of B. aeruginosa to toxic cyanobacteria.


Asunto(s)
Cianobacterias , Microbioma Gastrointestinal , Gastrópodos , Microcystis , Toxinas Biológicas , Animales , Pseudomonas aeruginosa , Agua Dulce/microbiología , Microcistinas/toxicidad
14.
Toxins (Basel) ; 15(2)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36828433

RESUMEN

Frequent outbreaks of harmful cyanobacterial blooms and the cyanotoxins they produce not only seriously jeopardize the health of freshwater ecosystems but also directly affect the survival of aquatic organisms. In this study, the dynamic characteristics and response patterns of transcriptomes and gut microbiomes in gastropod Bellamya aeruginosa were investigated to explore the underlying response mechanisms to toxic cyanobacterial exposure. The results showed that toxic cyanobacteria exposure induced overall hepatopancreatic transcriptome changes. A total of 2128 differentially expressed genes were identified at different exposure stages, which were mainly related to antioxidation, immunity, and metabolism of energy substances. In the early phase (the first 7 days of exposure), the immune system may notably be the primary means of resistance to toxin stress, and it performs apoptosis to kill damaged cells. In the later phase (the last 7 days of exposure), oxidative stress and the degradation activities of exogenous substances play a dominant role, and nutrient substance metabolism provides energy to the body throughout the process. Microbiomic analysis showed that toxic cyanobacteria increased the diversity of gut microbiota, enhanced interactions between gut microbiota, and altered microbiota function. In addition, the changes in gut microbiota were correlated with the expression levels of antioxidant-, immune-, metabolic-related differentially expressed genes. These results provide a comprehensive understanding of gastropods and intestinal microbiota response to toxic cyanobacterial stress.


Asunto(s)
Cianobacterias , Gastrópodos , Animales , Ecosistema , Transcriptoma , Pseudomonas aeruginosa , Microcistinas/toxicidad , Cianobacterias/metabolismo
15.
iScience ; 26(2): 105903, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36818280

RESUMEN

Potatoes consist of flavonoids that provide health benefits for human consumers. To learn more about how potato tuber flavonoid accumulation and flesh pigmentation are controlled, we analyzed the transcriptomic and metabolomic profile of potato tubers from three colored potato clones at three developmental phases using an integrated approach. From the 72 flavonoids identified in pigmented flesh, differential abundance was noted for anthocyanins, flavonols, and flavones. Weighted gene co-expression network analysis further allowed modules and candidate genes that positively or negatively regulate flavonoid biosynthesis to be identified. Furthermore, an R2R3-MYB repressor StMYB3 and an R3-MYB repressor StMYBATV involved in the modulation of anthocyanin biosynthesis during tuber development were identified. Both StMYB3 and StMYBATV could interact with the cofactor StbHLH1 and repress anthocyanin biosynthesis. Our results indicate a feedback regulatory mechanism of a coordinated MYB activator-repressor network on fine-tuning of potato tuber pigmentation during tuber development.

16.
Immunol Invest ; 52(2): 135-153, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36394561

RESUMEN

BACKGROUND: Interleukin-17 (IL-17) family cytokines play critical roles in inflammation and pathogen resistance. Inflammation in the central nervous system, denoted as neuroinflammation, promotes the onset and progression of Alzheimer's disease (AD). Previous studies showed that IL-17A neutralizing antibody treatment alleviated Amyloid ß (Aß) burden in rodent models of AD, while overexpression of IL-17A in mouse lateral ventricles rescued part of the AD pathology. However, the involvement of IL-17 in AD and its mechanism of action remain largely unknown. METHODS: To investigate the role of IL-17 in AD, we crossed mice lacking the common receptor of IL-17 signaling (IL-17RA knockout mice) to the APP/PS1 mouse model of AD. We then analyzed the composition of immune cells and cytokines/chemokines during different phases of AD pathology, and interrogated the underlying mechanism by which IL-17 may regulate immune cell infiltration into AD brains. RESULTS: Ablation of IL-17RA in APP/PS1 mice decreased infiltration of CD8+ T cells and myeloid cells to mouse brain. IL-17 was able to promote the production of myeloid- and T cell-attracting chemokines CXCL1 and CXCL9/10 in primary glial cells. We also observed that IL-17 is upregulated in the late stage of AD development, and ectopic expression of IL-17 via adenoviral infection to the cortex trended towards worsened cognition in APP/PS1 mice, suggesting a pathogenic role of excessive IL-17 in AD. CONCLUSION: Our data show that IL-17 signaling promotes neuroinflammation in AD by accelerating the infiltration of CD8+ T lymphocytes and Gr1+ CD11b+ myeloid cells.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Péptidos beta-Amiloides/metabolismo , Interleucina-17/metabolismo , Enfermedades Neuroinflamatorias , Ratones Transgénicos , Encéfalo/patología , Modelos Animales de Enfermedad , Linfocitos T CD8-positivos/metabolismo , Citocinas/metabolismo , Ratones Noqueados
17.
Front Microbiol ; 13: 906278, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35633671

RESUMEN

Freshwater gastropods are widely distributed and play an important role in aquatic ecosystems. Symbiotic microorganisms represented by gut microbes can affect the physiological and biochemical activities of their hosts. However, few studies have investigated the response of the gut microbial community of snails to environmental stress. In this study, the dynamics of the gut microbiota of the gastropod Bellamya aeruginosa were tracked to explore their responses in terms of their composition and function to cyanobacterial bloom. Differences in gut microbial community structures during periods of non-cyanobacterial bloom and cyanobacterial bloom were determined. Results showed that the alpha diversity of the gut microbiota exposed to cyanobacterial bloom was lower than that of the gut microbiota exposed to non-cyanobacterial bloom. The main genera differentiating the two periods were Faecalibacterium, Subdoligranulum, Ralstonia, and Pelomonas. Microcystins (MCs) and water temperature (WT) were the primary factors influencing the gut microbial community of B. aeruginosa; between them, the influence of MCs was greater than that of WT. Fourteen pathways (level 2) were notably different between the two periods. The pathways of carbohydrate metabolism, immune system, environmental adaptation, and xenobiotics biodegradation and metabolism in these differential pathways exhibited a strong linear regression relationship with MCs and WT. Changes in the functions of the gut microbiota may help B. aeruginosa meet its immunity and energy needs during cyanobacterial bloom stress. These results provide key information for understanding the response pattern of freshwater snail intestinal flora to cyanobacterial blooms and reveal the underlying environmental adaptation mechanism of gastropods from the perspective of intestinal flora.

18.
Front Genet ; 12: 739989, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603398

RESUMEN

Nuclear factor Y (NF-Y) is a ubiquitous transcription factor in eukaryotes, which is composed of three subunits (NF-YA, NF-YB, and NF-YC). NF-Y has been identified as a key regulator of multiple pathways in plants. Although the NF-Y gene family has been identified in many plants, it has not been reported in potato (Solanum tuberosum). In the present study, a total of 41 NF-Y proteins in potato (StNF-Ys) were identified, including 10 StNF-YA, 22 StNF-YB, and nine StNF-YC subunits, and their distribution on chromosomes, gene structure, and conserved motif was analyzed. A synteny analysis indicated that 14 and 38 pairs of StNF-Y genes were orthologous to Arabidopsis and tomato (Solanum lycopersicum), respectively, and these gene pairs evolved under strong purifying selection. In addition, we analyzed the expression profiles of NF-Y genes in different tissues of double haploid (DM) potato, as well as under abiotic stresses and hormone treatments by RNA-seq downloaded from the Potato Genome Sequencing Consortium (PGSC) database. Furthermore, we performed RNA-seq on white, red, and purple tuber skin and flesh of three potato cultivars at the tuber maturation stage to identify genes that might be involved in anthocyanin biosynthesis. These results provide valuable information for improved understanding of StNF-Y gene family and further functional analysis of StNF-Y genes in fruit development, abiotic stress tolerance, and anthocyanin biosynthesis in potato.

19.
Environ Sci Pollut Res Int ; 27(34): 42283-42293, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32319051

RESUMEN

Elucidating the bacterioplankton spatial distribution patterns and its determinants is a central topic in ecological research. However, research on the distribution patterns of bacterioplankton community composition (BCC) within a small-sized, highly dynamic freshwater lake remains unclear. In this study, we collected surface water samples from West Lake to investigate the spatiotemporal variation of BCC by 16S rRNA gene high-throughput sequencing. Clear spatial heterogeneity in BCC was identified both in summer and winter. The relatively high abundant taxa exhibited greater correlations with environmental factors and other abundant species in summer than in winter. Variation partitioning analysis was used to unravel the relative importance of environmental factors and spatial processes and further explore the underlying mechanism of BCC successions. Our results showed the predominant shared effect of environmental and spatial factors on BCC in summer (68.41%) and winter (57.37%), indicating that spatially structured environmental factors were the key determinants of structuring BCC spatial heterogeneity in West Lake in the two seasons. Furthermore, environmental factors alone explained a higher proportion of the variation in summer whereas spatial factors explained a higher proportion in winter. These divergences may be related to seasonal environmental changes and anthropogenic disturbances. Our study provided knowledge on BCC spatial heterogeneity in small freshwater habitats and their underlying determinants in different seasons.


Asunto(s)
Lagos , Microbiología del Agua , China , Ecosistema , Plancton , ARN Ribosómico 16S/genética , Estaciones del Año
20.
Mar Environ Res ; 158: 104956, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32217302

RESUMEN

A novel biological approach using ark shell bivalves as potential species for remediation of effluents was studied to determine the microbial community interspecies interaction and nutrient cycling in a restoration system of mariculture effluents. A field study showed that Scapharca subcrenata was the main driver of the microbial community's interspecies-interaction (PERMANOVA, R = 0.0572, P = 0.005) in the treatment zone (TZ). Analysis of co-occurrence networks based on random matrix theory (RMT) indicated that the network's complexity parameters were enhanced in the TZ and disrupted in the control zone (CZ) due to eutrophic disturbances. Concurrently, the TZ was correlated with more profound network modifications (i.e., higher modularity, total nodes (n), cohesion, and proportion of positive links), suggesting that S. subcrenata influenced microbial interspecies interactions in the system. Similarly, the co-occurring networks of generalists Proteobacteria (OTU2037) at genus Anaerospora and Actinobacteria (OTU9660) at genus Candidatus aquiluna for anaerobic ammonia-oxidation (ANAMMOX) were highly significant in the TZ. The top-down and bottom-up forces of S. subcrenata influenced the removal efficiency of nitrogenous compounds by reducing 81.51% of nitrite (NO2--N), 84.61% of total ammonium nitrogen (TAN) and 72.78% of nitrate (NO3--N). Generally, the introduction of ark shell bivalve (S. subcrenata) to the system as a biofilter provides a very low-cost bioremediation technology that could be one of the best restorations and remediation tools for mariculture effluents.


Asunto(s)
Acuicultura , Arcidae , Bivalvos , Microbiota , Scapharca , Anaerobiosis , Animales , Biodegradación Ambiental , Nitrógeno , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...