Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 66
1.
Fish Shellfish Immunol ; : 109626, 2024 May 24.
Article En | MEDLINE | ID: mdl-38797334

In arthropods, the involvement of Dscam (Down syndrome cell adhesion molecule) in innate immunity has been extensively demonstrated. Its cytoplasmic tail contains multiple conserved functional sites, which indicates its involvement in different intracellular signaling pathways. In this study, we focused on the role of the cytoplasmic tail of Dscam in the Chinese mitten crab (Eriocheir sinensis) immune defense. In the group with cytoplasmic tail knockdown (the site was located on constant exons 37 and 38), 3885 differentially expressed genes (DEGs) were identified. The DEGs were enriched in small molecule binding, protein-containing complex binding, and immunity-related pathways. The expression of selected genes were validated using quantitative real-time reverse transcription PCR. We identified key Cell cycle, Janus kinase (JAK)-signal transducer, activator of transcription (STAT) and mitogen-activated protein kinase (MAPK) signaling pathway genes, the results indicated that the cytoplasmic tail of Dscam controls antibacterial responses by regulating cell proliferation-related genes in hemocytes.

2.
Sci Adv ; 10(20): eadi7024, 2024 May 17.
Article En | MEDLINE | ID: mdl-38758791

At the synapse, presynaptic neurotransmitter release is tightly controlled by release machinery, involving the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and Munc13. The Ca2+ sensor Doc2 cooperates with Munc13 to regulate neurotransmitter release, but the underlying mechanisms remain unclear. In our study, we have characterized the binding mode between Doc2 and Munc13 and found that Doc2 originally occludes Munc13 to inhibit SNARE complex assembly. Moreover, our investigation unveiled that EphB2, a presynaptic adhesion molecule (SAM) with inherent tyrosine kinase functionality, exhibits the capacity to phosphorylate Doc2. This phosphorylation attenuates Doc2 block on Munc13 to promote SNARE complex assembly, which functionally induces spontaneous release and synaptic augmentation. Consistently, application of a Doc2 peptide that interrupts Doc2-Munc13 interplay impairs excitatory synaptic transmission and leads to dysfunction in spatial learning and memory. These data provide evidence that SAMs modulate neurotransmitter release by controlling SNARE complex assembly.


Calcium-Binding Proteins , Nerve Tissue Proteins , Neurotransmitter Agents , Receptor, EphB2 , SNARE Proteins , Synaptic Transmission , SNARE Proteins/metabolism , Animals , Neurotransmitter Agents/metabolism , Nerve Tissue Proteins/metabolism , Phosphorylation , Receptor, EphB2/metabolism , Receptor, EphB2/genetics , Calcium-Binding Proteins/metabolism , Protein Binding , Humans , Mice , Rats
3.
Molecules ; 29(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38731556

Red rice, a variety of pigmented grain, serves dual purposes as both a food and medicinal resource. In recent years, we have witnessed an increasing interest in the dermatological benefits of fermented rice extracts, particularly their whitening and hydrating effects. However, data on the skincare advantages derived from fermenting red rice with Aspergillus oryzae remain sparse. This study utilized red rice as a substrate for fermentation by Aspergillus oryzae, producing a substance known as red rice Aspergillus oryzae fermentation (RRFA). We conducted a preliminary analysis of RRFA's composition followed by an evaluation of its skincare potential through various in vitro tests. Our objective was to develop a safe and highly effective skincare component for potential cosmetic applications. RRFA's constituents were assessed using high-performance liquid chromatography (HPLC), Kjeldahl nitrogen determination, the phenol-sulfuric acid method, and enzyme-linked immunosorbent assay (ELISA). We employed human dermal fibroblasts (FB) to assess RRFA's anti-aging and antioxidative properties, immortalized keratinocytes (HaCaT cells) and 3D epidermal models to examine its moisturizing and reparative capabilities, and human primary melanocytes (MCs) to study its effects on skin lightening. Our findings revealed that RRFA encompasses several bioactive compounds beneficial for skin health. RRFA can significantly promote the proliferation of FB cells. And it markedly enhances the mRNA expression of ECM-related anti-aging genes and reduces reactive oxygen species production. Furthermore, RRFA significantly boosts the expression of Aquaporin 3 (AQP3), Filaggrin (FLG), and Hyaluronan Synthase 1 (HAS1) mRNA, alongside elevating moisture levels in a 3D epidermal model. Increases were also observed in the mRNA expression of Claudin 1 (CLDN1), Involucrin (IVL), and Zonula Occludens-1 (ZO-1) in keratinocytes. Additionally, RRFA demonstrated an inhibitory effect on melanin synthesis. Collectively, RRFA contains diverse ingredients which are beneficial for skin health and showcases multifaceted skincare effects in terms of anti-aging, antioxidant, moisturizing, repairing, and whitening capabilities in vitro, highlighting its potential for future cosmetic applications.


Aspergillus oryzae , Fermentation , Filaggrin Proteins , Oryza , Aspergillus oryzae/metabolism , Oryza/chemistry , Oryza/metabolism , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Keratinocytes/metabolism , Keratinocytes/drug effects , HaCaT Cells , Fibroblasts/metabolism , Fibroblasts/drug effects , Melanocytes/metabolism , Melanocytes/drug effects , Skin Care/methods , Skin/metabolism
4.
ACS Cent Sci ; 10(3): 555-568, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38559311

Myxobacteria are a prolific source of secondary metabolites with sheer chemical complexity, intriguing biosynthetic enzymology, and diverse biological activities. In this study, we report the discovery, biosynthesis, biomimetic total synthesis, physiological function, structure-activity relationship, and self-resistance mechanism of the 5-methylated pyrazinone coralinone from a myxobacterium Corallococcus exiguus SDU70. A single NRPS/PKS gene corA was genetically and biochemically demonstrated to orchestrate coralinone, wherein the integral PKS part is responsible for installing the 5-methyl group. Intriguingly, coralinone exacerbated cellular aggregation of myxobacteria grown in liquid cultures by enhancing the secretion of extracellular matrix, and the 5-methylation is indispensable for the alleged activity. We provided an evolutionary landscape of the corA-associated biosynthetic gene clusters (BGCs) distributed in the myxobacterial realm, revealing the divergent evolution for the diversity-oriented biosynthesis of 5-alkyated pyrazinones. This phylogenetic contextualization provoked us to identify corB located in the proximity of corA as a self-resistance gene. CorB was experimentally verified to be a protease that hydrolyzes extracellular proteins to antagonize the agglutination-inducing effect of coralinone. Overall, we anticipate these findings will provide new insights into the chemical ecology of myxobacteria and lay foundations for the maximal excavation of these largely underexplored resources.

5.
Sensors (Basel) ; 24(8)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38676169

Accurate and reliable pose estimation of boom-type roadheaders is the key to the forming quality of the tunneling face in coal mines, which is of great importance to improve tunneling efficiency and ensure the safety of coal mine production. The multi-laser-beam target-based visual localization method is an effective way to realize accurate and reliable pose estimation of a roadheader body. However, the complex background interference in coal mines brings great challenges to the stable and accurate segmentation and extraction of laser beam features, which has become the main problem faced by the long-distance visual positioning method of underground equipment. In this paper, a semantic segmentation network for underground laser beams in coal mines, RCEAU-Net, is proposed based on U-Net. The network introduces residual connections in the convolution of the encoder and decoder parts, which effectively fuses the underlying feature information and improves the gradient circulation performance of the network. At the same time, by introducing cascade multi-scale convolution in the skipping connection section, which compensates for the lack of contextual semantic information in U-Net and improves the segmentation effect of the network model on tiny laser beams at long distance. Finally, the introduction of an efficient multi-scale attention module with cross-spatial learning in the encoder enhances the feature extraction capability of the network. Furthermore, the laser beam target dataset (LBTD) is constructed based on laser beam target images collected from several coal mines, and the proposed RCEAU-Net model is then tested and verified. The experimental results show that, compared with the original U-Net, RCEAU-Net can ensure the real-time performance of laser beam segmentation while increasing the Accuracy by 0.19%, Precision by 2.53%, Recall by 22.01%, and Intersection and Union Ratio by 8.48%, which can meet the requirements of multi-laser-beam feature segmentation and extraction under complex backgrounds in coal mines, so as to further ensure the accuracy and stability of long-distance visual positioning for boom-type roadheaders and ensure the safe production in the working face.

6.
Signal Transduct Target Ther ; 9(1): 63, 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38453934

Neurotransmitter-initiated signaling pathway were reported to play an important role in regulating the malignant phenotype of tumor cells. Cancer cells could exhibit a "neural addiction" property and build up local nerve networks to achieve an enhanced neurotransmitter-initiated signaling through nerve growth factor-mediated axonogenesis. Targeting the dysregulated nervous systems might represent a novel strategy for cancer treatment. However, whether intrahepatic cholangiocarcinoma (ICC) could build its own nerve networks and the role of neurotransmitters in the progression ICC remains largely unknown. Immunofluorescence staining and Enzyme-linked immunosorbent assay suggested that ICC cells and the infiltrated nerves could generate a tumor microenvironment rich in acetylcholine that promotes ICC metastasis by inducing epithelial-mesenchymal transition (EMT). Acetylcholine promoted ICC metastasis through interacting with its receptor, alpha 5 nicotine acetylcholine receptor subunits (CHRNA5). Furthermore, acetylcholine/CHRNA5 axis activated GSK3ß/ß-catenin signaling pathway partially through the influx of Ca2+-mediated activation of Ca/calmodulin-dependent protein kinases (CAMKII). In addition, acetylcholine signaling activation also expanded nerve infiltration through increasing the expression of Brain-Derived Neurotrophic Factor (BDNF), which formed a feedforward acetylcholine-BDNF axis to promote ICC progression. KN93, a small-molecule inhibitor of CAMKII, significantly inhibited the migration and enhanced the sensitivity to gemcitabine of ICC cells. Above all, Acetylcholine/CHRNA5 axis increased the expression of ß-catenin to promote the metastasis and resistance to gemcitabine of ICC via CAMKII/GSK3ß signaling, and the CAMKII inhibitor KN93 may be an effective therapeutic strategy for combating ICC metastasis.


Benzenesulfonamides , Benzylamines , Bile Duct Neoplasms , Cholangiocarcinoma , Humans , beta Catenin/metabolism , Brain-Derived Neurotrophic Factor/genetics , Nicotine , Acetylcholine , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Gemcitabine , Glycogen Synthase Kinase 3 beta , Cell Line, Tumor , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Neurotransmitter Agents , Receptors, Cholinergic , Tumor Microenvironment
7.
Heliyon ; 10(5): e26131, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38449662

Intrinsic and extrinsic aging affect the health of human skin. Extracellular matrix protein degradation, DNA damage and oxidative stress are known to disturb skin architecture and skin homeostasis leading to skin aging. Traditional Chinese Medicine (TCM) delivers a large amount of knowledge regarding the phytotherapeutic power of diverse plants. Panax ginseng, Polygonatum cyrtonema, Epiphyllum oxypetalum, Nelumbo nucifera and Osmanthus fragrans are five plants used in TCM for their protective effect. In this study, several combinations of these TCM plants were explored: first, an in silico analysis was performed to predict their potential to target biological activities in the skin and then, some predictions were verified with in vitro studies to underline the synergistic effect of plant extracts. The results showed a stronger anti-aging activity for the combination with the five plants compared to the combination with Panax ginseng, Polygonatum cyrtonema, Epiphyllum oxypetalum and, compared to Panax ginseng alone.

8.
Heliyon ; 10(3): e25089, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38317949

To better understand the role of the competitive environment for firm innovation, this study takes China's Fair Competition Review System as an example to explore the impact of administrative monopoly regulation on environmental innovation. By utilizing China's market Structure, the study devises a quasi-natural experiment. It employs the DID method to assess the causal relationship between administrative monopoly regulation and the firm's environmental innovation. The findings indicate that implementing the Fair Competition Review System induces a marked reduction in environmental innovation by firms in the administrative monopoly sector, suggesting a substantial inhibition effect of the policy. Further research shows that this inhibition effect primarily manifests in the short term. Breaking administrative monopoly and optimizing the market environment wield the potential to increase firm environmental innovation in the long term. Evidence from the mechanism analysis highlights the critical roles played by factors such as industry competition, industry environmental uncertainty, R&D investments, financial constraints, and government subsidies in driving this process.

9.
Exp Hematol Oncol ; 13(1): 20, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38388466

BACKGROUND: Hepatocellular carcinoma (HCC) is closely associatedwith chronic liver diseases, particularly liver cirrhosis, which has an altered extracellular matrix (ECM) composition. The influence and its mechanism of the cirrhotic-ECM on the response of HCC to immune checkpoint inhibitor (ICI) remains less clarified. METHODS: In silico, proteomic and pathological assessment of alteration of cirrhotic-ECM were applied in clinical cohort. Multiple pre-clinical models with ECM manipulation were used to evaluate cirrhotic-ECM's effect on ICI treatment. In silico, flow cytometry and IHC were applied to explore how cirrhotic-ECM affect HCC microenvironment. In vitro and in vivo experiments were carried out to identify the mechanism of how cirrhotic-ECM undermined ICI treatment. RESULTS: We defined "a pro-tumor cirrhotic-ECM" which was featured as the up-regulation of collagen type 1 (Col1). Cirrhotic-ECM/Col1 was closely related to impaired T cell function and limited anti PD-1 (aPD-1) response of HCC patients from the TCGA pan cancer cohort and the authors' institution, as well as in multiple pre-clinical models. Mechanically, cirrhotic-ECM/Col1 orchestrated an immunosuppressive microenvironment (TME) by triggering Col1-DDR1-NFκB-CXCL8 axis, which initiated neutrophil extracellular traps (NETs) formation to shield HCC cells from attacking T cells and impede approaching T cells. Nilotinib, an inhibitor of DDR1, reversed the neutrophils/NETs dominant TME and efficiently enhanced the response of HCC to aPD-1. CONCLUSIONS: Cirrhotic-ECM modulated a NETs enriched TME in HCC, produced an immune suppressive TME and weakened ICI efficiency. Col1 receptor DDR1 could be a potential target synergically used with ICI to overcome ECM mediated ICI resistance. These provide a mechanical insight and novel strategy to overcome the ICI resistance of HCC.

10.
Cell Rep Med ; 5(2): 101415, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38382467

Immune checkpoint inhibitors, particularly PD-1/PD-L1 blockades, have been approved for unresectable hepatocellular carcinoma (HCC). However, high resistance rates still limit their efficacy, highlighting the urgent need to understand the underlying mechanisms and develop strategies for overcoming the resistance. In this study, we demonstrate that HCC with high MER proto-oncogene tyrosine kinase (MerTK) expression exhibits anti-PD-1/PD-L1 resistance in two syngeneic mouse models and in patients who received anti-PD-1/PD-L1 therapy. Mechanistically, MerTK renders HCC resistant to anti-PD-1/PD-L1 by limiting ferroptosis with the upregulation of SLC7A11 via the ERK/SP1 pathway and facilitating the development of an immunosuppressive tumor microenvironment (TME) with the recruitment of myeloid-derived suppressor cells (MDSCs). Sitravatinib, an inhibitor of MerTK, sensitizes resistant HCC to anti-PD-L1 therapy by promoting tumor ferroptosis and decreasing MDSC infiltration into the TME. In conclusion, we find that MerTK could serve as a predictive biomarker for patient stratification and as a promising target to overcome anti-PD-1/PD-L1 resistance in HCC.


Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Animals , Humans , Mice , B7-H1 Antigen , c-Mer Tyrosine Kinase/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Immunity , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Tumor Microenvironment
11.
Zookeys ; 1189: 257-273, 2024.
Article En | MEDLINE | ID: mdl-38282714

A new species of xenodermid snake, Achalinusnanshanensis H. Li, L.-Q. Zhu, Z.-Q. Zhang & X.-Y. Mo, sp. nov., is described based on three specimens collected from Nanshan National Park and Tongdao County of southwest Hunan Province. This new species is genetically distinct amongst its congeners with the mitochondrial COI uncorrected p-distance ranging from 4.4% (in A.yangdatongi) to 17.7% (in A.meiguensis). In addition, this new species can be distinguished from its congeners by a combination of the following morphological characters: (1) dorsal scales with 23 or 25 rows throughout and strongly keeled; (2) tail relatively longer so that TaL/ToL = 0.215-0.248; (3) length of suture between internasals significantly longer than that between prefrontals, LSBI/LSBP = 1.66-1.84; (4) single loreal scale present; (5) SPL 6 in number, with the fourth and fifth contacting eye; (6) IFL 6 in number, with the first three touching the first pair of chin shields; (7) TMP is 2-2-4/2-2(3)-4, with the anterior pair elongated and in contact with the eye; (8) ventrals 2 + 147-158; (9) subcaudals 64-77, unpaired; (10) dorsal body brownish black, with a bright yellow neck collar extending to the head and abdomen in the occipital region. The recognition of the new species increases the number of described Achalinus species to 28, of which 21 are found in China.

12.
J Cosmet Dermatol ; 23(4): 1360-1364, 2024 Apr.
Article En | MEDLINE | ID: mdl-38054577

BACKGROUND: Dendrobium officinale is widely used for a long time in China, with effect of antioxidation, antitumor, enhancing immunity and so on. In recent years, Dendrobium officinale has been gradually used in cosmetics due to its powerful beauty effects. AIMS: Based on senescence-associated secretory phenotype (SASP), we studied the antiaging effect of Dendrobium officinale extract (DOE) on skin. METHODS: The senescent model of human skin fibroblasts was established by the induction of H2O2, and the content of SASP factors was tested after the treatment of DOE, such as interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1) and matrix metalloproteinase-1 (MMP-1). RESULTS: It was found that after the treatment with different concentrations of DOE, the contents of IL-6, MCP-1 and MMP-1 all decreased in different degrees. CONCLUSIONS: It indicated that DOE could inhibit the secretion of SASP factors and was a promising natural antiaging agent.


Dendrobium , Interleukin-6 , Humans , Senescence-Associated Secretory Phenotype , Cellular Senescence , Matrix Metalloproteinase 1 , Hydrogen Peroxide/pharmacology , Fibroblasts
13.
Heliyon ; 9(11): e21664, 2023 Nov.
Article En | MEDLINE | ID: mdl-38074870

Backgrounds and aims: Carcinogenesis is characterized by an unlimited growth of cells exacerbated by Cox-2 overexpression. Cox-2 inhibitors have been proven effective in preventing and treating tumors. In our previous studies, we found that 4-Amino-2-Trifluoromethylphenyl Retinate (ATPR) induces cell apoptosis and inhibits cell proliferation to exhibit anti-cancer properties. The use of ATRA as well as Cox-2 inhibitors in clinical settings can cause adverse reactions. It is unknown what the effects and mechanisms of co-administration of ATPR and Cox-2 inhibitors are. Results: A combination of ATPR and Cox-2 inhibitors, Celecoxib, inhibited pharyngeal cancer cell proliferation in vitro and induced apoptosis. The cell cycle was arrested at G0/G1 by activating P53 and CDNA1. By activating MAPK/JNK pathways, ATPR and Celecoxib led to intrinsic and extrinsic apoptosis in pharyngeal cancer cells. ATPR/Celecoxib combined treatment suppressed tumor growth in the pharyngeal cancer cell-derived xenograft mouse model by increasing the number of apoptotic cells. The expression of the RARA and PTGS2 genes was significantly increased in tumor tissue compared to non-tumor tissue in the clinical analysis of the head and neck squamous cell carcinoma dataset. An association was found between this and the level of intrinsic apoptotic signals. Furthermore, a survival analysis conducted over a period of five years indicated that higher levels of RARA expression were associated with a better clinical outcome. Conclusion: ATPR and celecoxib inhibit the proliferation of cancer cells as well as induce apoptosis. Co-administration of ATPR and Cox-2 inhibitors has the potential to be a novel treatment plan for cancer.

14.
Cell Rep ; 42(11): 113455, 2023 11 28.
Article En | MEDLINE | ID: mdl-37976159

Although single-cell multi-omics technologies are undergoing rapid development, simultaneous transcriptome and proteome analysis of a single-cell individual still faces great challenges. Here, we developed a single-cell simultaneous transcriptome and proteome (scSTAP) analysis platform based on microfluidics, high-throughput sequencing, and mass spectrometry technology to achieve deep and joint quantitative analysis of transcriptome and proteome at the single-cell level, providing an important resource for understanding the relationship between transcription and translation in cells. This platform was applied to analyze single mouse oocytes at different meiotic maturation stages, reaching an average quantification depth of 19,948 genes and 2,663 protein groups in single mouse oocytes. In particular, we analyzed the correlation of individual RNA and protein pairs, as well as the meiosis regulatory network with unprecedented depth, and identified 30 transcript-protein pairs as specific oocyte maturational signatures, which could be productive for exploring transcriptional and translational regulatory features during oocyte meiosis.


Proteome , Transcriptome , Animals , Mice , Transcriptome/genetics , Proteome/metabolism , Oocytes/metabolism , Oogenesis/genetics , Gene Expression Profiling , Meiosis
15.
Sci Robot ; 8(82): eadg3679, 2023 09 13.
Article En | MEDLINE | ID: mdl-37756384

For many robotics applications, it is desirable to have relatively low-power and efficient onboard solutions. We took inspiration from insects, such as ants, that are capable of learning and following routes in complex natural environments using relatively constrained sensory and neural systems. Such capabilities are particularly relevant to applications such as agricultural robotics, where visual navigation through dense vegetation remains a challenging task. In this scenario, a route is likely to have high self-similarity and be subject to changing lighting conditions and motion over uneven terrain, and the effects of wind on leaves increase the variability of the input. We used a bioinspired event camera on a terrestrial robot to collect visual sequences along routes in natural outdoor environments and applied a neural algorithm for spatiotemporal memory that is closely based on a known neural circuit in the insect brain. We show that this method is plausible to support route recognition for visual navigation and more robust than SeqSLAM when evaluated on repeated runs on the same route or routes with small lateral offsets. By encoding memory in a spiking neural network running on a neuromorphic computer, our model can evaluate visual familiarity in real time from event camera footage.


Robotics , Learning , Brain , Agriculture , Algorithms
16.
Med ; 4(10): 728-743.e7, 2023 Oct 13.
Article En | MEDLINE | ID: mdl-37633269

BACKGROUND: Identifying a metastasis-correlated immune cell composition within the tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) will help to develop promising and innovative therapeutic strategies. However, the dynamics of immune cell lineages in the TME of advanced PDAC remains elusive. METHODS: Twenty-six samples from 11 patients (including 11 primary tumor tissues, 10 blood, and 5 lymph nodes) with different stages were used to develop a multiscale immune profile. High-dimensional single-cell analysis with mass cytometry was performed to search for metastasis-correlated immune changes in the microenvironment. The findings were further validated by published single-cell RNA sequencing (scRNA-seq) data and multiplex fluorescent immunohistochemistry. FINDINGS: High-dimensional single-cell profiling revealed that the three immune-relevant sites formed a distinct immune atlas. Interestingly, the PDAC microenvironment with the potential for metastatic spread to the liver was characterized by a decreased proportion of CD103+PD-1+CD39+ T cells with cytotoxic and exhausted functional status and an increased proportion of CD73+ macrophages. Analysis of scRNA-seq data of PDAC further confirmed the identified subsets and revealed strong potential interactions via various ligand-receptor pairs between the identified T subsets and the macrophages. Moreover, stratified patients with different immune compositions correlated with clinical outcomes of PDAC. CONCLUSIONS: Our study uncovered metastasis-correlated immune changes, suggesting that ecosystem-based patient classification in PDAC will facilitate the identification of candidates likely to benefit from immunotherapy. FUNDING: This work was supported by the National Key Research and Development Program of China, the Shanghai International Science and Technology Collaboration Program, the Shanghai Sailing Program, and the Key Laboratory of diagnosis and treatment of severe hepato-pancreatic diseases of Zhejiang Province.


Carcinoma, Pancreatic Ductal , Liver Neoplasms , Pancreatic Neoplasms , Humans , Ecosystem , China , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/drug therapy , Tumor Microenvironment , Pancreatic Neoplasms
17.
BMC Biol ; 21(1): 158, 2023 07 13.
Article En | MEDLINE | ID: mdl-37443000

BACKGROUND: Neurotransmitter release depends on the fusion of synaptic vesicles with the presynaptic membrane and is mainly mediated by SNARE complex assembly. During the transition of Munc18-1/Syntaxin-1 to the SNARE complex, the opening of the Syntaxin-1 linker region catalyzed by Munc13-1 leads to the extension of the domain 3a hinge loop, which enables domain 3a to bind SNARE motifs in Synaptobrevin-2 and Syntaxin-1 and template the SNARE complex assembly. However, the exact mechanism of domain 3a extension remains elusive. RESULTS: Here, we characterized residues on the domain 3a hinge loop that are crucial for the extension of domain 3a by using biophysical and biochemical approaches and electrophysiological recordings. We showed that the mutation of residues T323/M324/R325 disrupted Munc13-1-mediated SNARE complex assembly and membrane fusion starting from Munc18-1/Syntaxin-1 in vitro and caused severe defects in the synaptic exocytosis of mouse cortex neurons in vivo. Moreover, the mutation had no effect on the binding of Synaptobrevin-2 to isolated Munc18-1 or the conformational change of the Syntaxin-1 linker region catalyzed by the Munc13-1 MUN domain. However, the extension of the domain 3a hinge loop in Munc18-1/Syntaxin-1 was completely disrupted by the mutation, leading to the failure of Synaptobrevin-2 binding to Munc18-1/Syntaxin-1. CONCLUSIONS: Together with previous results, our data further support the model that the template function of Munc18-1 in SNARE complex assembly requires the extension of domain 3a, and particular residues in the domain 3a hinge loop are crucial for the autoinhibitory release of domain 3a after the MUN domain opens the Syntaxin-1 linker region.


Nerve Tissue Proteins , Vesicle-Associated Membrane Protein 2 , Mice , Animals , Nerve Tissue Proteins/genetics , Vesicle-Associated Membrane Protein 2/genetics , Vesicle-Associated Membrane Protein 2/metabolism , Syntaxin 1/genetics , Syntaxin 1/chemistry , Syntaxin 1/metabolism , Qa-SNARE Proteins/genetics , Qa-SNARE Proteins/metabolism , SNARE Proteins/metabolism , Protein Binding
18.
Phytomedicine ; 117: 154903, 2023 Aug.
Article En | MEDLINE | ID: mdl-37301185

BACKGROUND: Phosphorylated Smad3 isoforms are reversible and antagonistic, and the tumour-suppressive pSmad3C can shift to an oncogenic pSmad3L signal. In addition, Nrf2 has a two-way regulatory effect on tumours, protecting normal cells from carcinogens and promoting tumour cell survival in chemotherapeutics. Accordingly, we hypothesised that the transformation of pSmad3C/3L is the basis for Nrf2 to produce both pro- and/or anti-tumourigenic effects in hepatocarcinogenesis. Astragaloside IV (AS-IV), the major component of Astragalus membranaceus, exerts anti-fibrogenic and carcinogenic actions. Lately, AS-IV administration could delay the occurrence of primary liver cancer by persistently inhibiting the fibrogenesis and regulating pSmad3C/3 L and Nrf2/HO-1 pathways synchronously. However, effect of AS-IV on hepatocarcinogenesis implicated in the bidirectional cross-talking of pSmad3C/3 L and Nrf2/HO-1 signalling, especially which one contributes palpably than the other still remains unclear. PURPOSE: This study aims to settle the above questions by using in vivo (pSmad3C+/- and Nrf2-/- mice) and in vitro (plasmid- or lentivirus- transfected HepG2 cells) models of HCC. STUDY DESIGN AND METHODS: The correlation of Nrf2 to pSmad3C/pSmad3L in HepG2 cells was analysed by Co-immunoprecipitation and dual-luciferase reporter assay. Pathological changes of Nrf2, pSmad3C, and pSmad3L in human HCC patients, pSmad3C+/- mice, and Nrf2-/- mice were gauged by immunohistochemical, haematoxylin and eosin staining, Masson, and immunofluorescence assays. Finally, western blot and qPCR were used to verify the bidirectional cross-talking of pSmad3C/3L and Nrf2/HO-1 signalling protein and mRNA in vivo and in vitro models of HCC. RESULTS: Histopathological manifestations and biochemical indicators revealed that pSmad3C+/- could abate the ameliorative effects of AS-IV on fibrogenic/carcinogenic mice with Nrf2/HO-1 deactivation and pSmad3C/p21 transform to pSmad3L/PAI-1//c-Myc. As expected, cell experiments confirmed that upregulating pSmad3C boosts the inhibitory activity of AS-IV on phenotypes (cell proliferation, migration and invasion), followed by a shift of pSmad3L to pSmad3C and activation of Nrf2/HO-1. Synchronously, experiments in Nrf2-/- mice and lentivirus-carried Nrf2shRNA cell echoed the results of pSmad3C knockdown. Complementarily, Nrf2 overexpression resulted in the opposite result. Furthermore, Nrf2/HO-1 contributes to AS-IV's anti-HCC effect palpably compared with pSmad3C/3L. CONCLUSION: These studies highlight that harnessing the bidirectional crosstalk pSmad3C/3 L and Nrf2/HO-1, especially Nrf2/HO-1 signalling, acts more effectively in AS-IV's anti-hepatocarcinogenesis, which may provide an important theoretical foundation for the use of AS-IV against HCC.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Mice , Animals , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , NF-E2-Related Factor 2 , Cell Transformation, Neoplastic
19.
Cell Rep ; 42(7): 112666, 2023 07 25.
Article En | MEDLINE | ID: mdl-37347667

Protein lysine crotonylation has been recently identified as a vital posttranslational modification in cellular processes, particularly through the modification of histones. We show that lysine crotonylation is an important modification of the cytoplastic and mitochondria proteins. Enzymes in glycolysis, the tricarboxylic acid (TCA) cycle, fatty acid metabolism, glutamine metabolism, glutathione metabolism, the urea cycle, one-carbon metabolism, and mitochondrial fusion/fission dynamics are found to be extensively crotonylated in pancreatic cancer cells. This modulation is mainly controlled by a pair of crotonylation writers and erasers including CBP/p300, HDAC1, and HDAC3. The dynamic crotonylation of metabolic enzymes is involved in metabolism regulation, which is linked with tumor progression. Interestingly, the activation of MTHFD1 by decrotonylation at Lys354 and Lys553 promotes the development of pancreatic cancer by increasing resistance to ferroptosis. Our study suggests that crotonylation represents a metabolic regulatory mechanism in pancreatic cancer progression.


Lysine , Pancreatic Neoplasms , Humans , Lysine/metabolism , Histones/metabolism , Glycolysis , Protein Processing, Post-Translational
20.
Opt Express ; 31(10): 15461-15473, 2023 May 08.
Article En | MEDLINE | ID: mdl-37157647

Imaging through turbid medium is a long pursuit in many research fields, such as biomedicine, astronomy and automatic vehicle, in which the reflection matrix-based method is a promising solution. However, the epi-detection geometry suffers from round-trip distortion and it is challenging to isolate the input and output aberrations in non-ideal cases due to system imperfections and measurement noises. Here, we present an efficient framework based on single scattering accumulation together with phase unwrapping that can accurately separate input and output aberrations from the noise-affected reflection matrix. We propose to only correct the output aberration while suppressing the input aberration by incoherent averaging. The proposed method is faster in convergence and more robust against noise, avoiding precise and tedious system adjustments. In both simulations and experiments, we demonstrate the diffraction-limited resolution capability under optical thickness beyond 10 scattering mean free paths, showing the potential of applications in neuroscience and dermatology.

...