Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.518
1.
Nat Commun ; 15(1): 3923, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724494

While the role of crystal facets is well known in traditional heterogeneous catalysis, this effect has not yet been thoroughly studied in plasmon-assisted catalysis, where attention has primarily focused on plasmon-derived mechanisms. Here, we investigate plasmon-assisted electrocatalytic CO2 reduction using different shapes of plasmonic Au nanoparticles - nanocube (NC), rhombic dodecahedron (RD), and octahedron (OC) - exposing {100}, {110}, and {111} facets, respectively. Upon plasmon excitation, Au OCs doubled CO Faradaic efficiency (FECO) and tripled CO partial current density (jCO) compared to a dark condition, with NCs also improving under illumination. In contrast, Au RDs maintained consistent performance irrespective of light exposure, suggesting minimal influence of light on the reaction. Temperature experiments ruled out heat as the main factor to explain such differences. Atomistic simulations and electromagnetic modeling revealed higher hot carrier abundance and electric field enhancement on Au OCs and NCs than RDs. These effects now dominate the reaction landscape over the crystal facets, thus shifting the reaction sites when comparing dark and plasmon-activated processes. Plasmon-assisted H2 evolution reaction experiments also support these findings. The dominance of low-coordinated sites over facets in plasmonic catalysis suggests key insights for designing efficient photocatalysts for energy conversion and carbon neutralization.

2.
Front Med (Lausanne) ; 11: 1352206, 2024.
Article En | MEDLINE | ID: mdl-38725466

Background: Kimura disease is characterized by inflammation, with its underlying causes remaining uncertain. There is a lack of comprehensive and systematic research on the pathology of this condition in pediatric patients. Our objective is to study the clinical and pathological attributes of Kimura disease in pediatric patients and investigate the potential diagnostic significance of immunoglobulin E (IgE) in this context. Methods: Clinical and laboratory information, pathological characteristics, and follow-up data were correlated to examine the distinctive features. Immunohistochemistry, acid-fast staining, and molecular assay were used to identify the presence of IgE and pathogens. Results: We conducted an analysis of five cases of Kimura disease in pediatric patients at our hospital. The patients' ages ranged from 5 years and 7 months to 14 years and 2 months, with 4 (80%) being male. The most common site was the head and neck region, particularly the postauricular subcutaneous area. Eosinophilia was observed in four patients (80%), and two patients (40%) had elevated serum immunoglobulin E (IgE) levels. Histopathological changes included eosinophilic infiltrates, follicular hyperplasia, and the proliferation of postcapillary venules. Immunohistochemical results supported the reactive nature of the lymphoid process and IgE deposition in the follicle, while no specific pathogens were discovered by special staining. All patients underwent surgical excision, and none experienced recurrence in their original location. Conclusion: Children with Kimura disease show distinct eosinophilic and IgE alterations in both laboratory findings and pathological features. The application of immunohistochemical staining of IgE could serve as a promising marker for diagnosing Kimura disease.

3.
Eur Spine J ; 2024 May 11.
Article En | MEDLINE | ID: mdl-38733399

BACKGROUND: Sarcopenia (SP) and intervertebral disc degeneration (IVDD) have a higher incidence in the elderly population. Previous studies have indicated a potential association between SP and IVDD. The objective of this study is to elucidate the potential causal relationship between sarcopenia-related traits and IVDD through Two-sample Mendelian randomization (MR) analysis. METHODS: We utilized a genome-wide association study conducted on the European population to collect aggregated data on sarcopenia and IVDD. Inverse variance weighting was primarily employed, supplemented by MR Egger, weighted median, simple model, and weighted model methods. Additionally, sensitivity analysis was performed to assess the robustness of the findings. RESULTS: Appendicular lean mass is positively associated with "Other intervertebral disc disorders" (OIDD) and "Prolapsed or slipped disc" (POSD) (OIDD: p = 0.002, OR = 1.120; POSD: p < 0.001, OR = 1.003), while grip strength (GS) is positively associated with POSD (left: p = 0.004, OR = 1.008; right: p < 0.001, OR = 1.010). It is worth mentioning that walking pace has significant causal relationship with "Low back pain" (LBP), "Lower back pain or/and sciatica" (LBPOAS), "Sciatica with lumbago" (SWL) and OIDD (LBP: p < 0.001, OR = 0.204; LBPOAS: p < 0.001, OR = 0.278; SWL: p = 0.003, OR = 0.249; OIDD: p < 0.001, OR = 0.256). CONCLUSION: The present study revealed the causal relationship between SP-related traits and IVDD and recommended to prevent and treat sarcopenia as a means of preventing IVDD in clinic practice.

4.
Int J Biol Macromol ; 270(Pt 1): 132057, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710243

Adipose tissue plays a crucial role in maintaining energy balance, regulating hormones, and promoting metabolic health. To address disorders related to obesity and develop effective therapies, it is essential to have a deep understanding of adipose tissue biology. In recent years, RNA methylation has emerged as a significant epigenetic modification involved in various cellular functions and metabolic pathways. Particularly in the realm of adipogenesis and lipid metabolism, extensive research is ongoing to uncover the mechanisms and functional importance of RNA methylation. Increasing evidence suggests that RNA methylation plays a regulatory role in adipocyte development, metabolism, and lipid utilization across different organs. This comprehensive review aims to provide an overview of common RNA methylation modifications, their occurrences, and regulatory mechanisms, focusing specifically on their intricate connections to fat metabolism. Additionally, we discuss the research methodologies used in studying RNA methylation and highlight relevant databases that can aid researchers in this rapidly advancing field.

5.
Genesis ; 62(3): e23599, 2024 Jun.
Article En | MEDLINE | ID: mdl-38764323

BACKGROUND: Increasing evidence suggests that circular RNA (circRNA) plays a regulatory role in the progression of renal cell carcinoma (RCC). However, the precise function and underlying mechanism of circSCNN1A in RCC progression still remain unclear. METHODS: The expression levels of circSCNN1A, microRNA-590-5p (miR-590-5p), claudin 8 (CLDN8), cyclin D1, matrix metalloprotein 2 (MMP2), MMP9, E-cadherin, N-cadherin and vimentin were detected by a quantitative real-time polymerase chain reaction and Western blotting analysis. Immunohistochemistry assay was performed to analyze the positive expression rate of CLDN8. Cell proliferation was investigated by cell colony formation, 5-Ethynyl-2'-deoxyuridine and DNA content quantitation assays. Cell migration and invasion were assessed by wound-healing and transwell invasion assays. Interactions among circSCNN1A, miR-590-5p and CLDN8 were identified by dual-luciferase reporter assay, RNA immunoprecipitation assay and RNA pull-down assay. Xenograft mouse model assay was conducted to verify the effect of circSCNN1A on tumor formation in vivo. RESULTS: CircSCNN1A and CLDN8 expression were significantly downregulated, while miR-590-5p was upregulated in both RCC tissues and cells. CircSCNN1A overexpression inhibited RCC cell proliferation, migration and invasion, accompanied by decreases of cyclin D1, MMP2, MMP9, N-cadherin and vimentin expression and an increase of E-cadherin expression. CircSCNN1A acted as a miR-590-5p sponge and regulated RCC cell processes by binding to miR-590-5p. CLDN8, a target gene of miR-590-5p, was involved in the regulation of the biological behaviors of RCC cells by miR-590-5p. In addition, circSCNN1A induced CLDN8 production by interacting with miR-590-5p. Further, circSCNN1A suppressed tumor formation in vivo. CONCLUSION: CircSCNN1A inhibited RCC cell proliferation, migration and invasion by regulating the miR-590-5p/CLDN8 pathway.


Carcinoma, Renal Cell , Cell Movement , Cell Proliferation , Claudins , Gene Expression Regulation, Neoplastic , Kidney Neoplasms , MicroRNAs , Neoplasm Invasiveness , RNA, Circular , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Animals , Cell Movement/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Mice , Cell Line, Tumor , RNA, Circular/genetics , RNA, Circular/metabolism , Claudins/genetics , Claudins/metabolism , Mice, Nude , Female , Male
6.
Sci Rep ; 14(1): 10745, 2024 05 10.
Article En | MEDLINE | ID: mdl-38730240

Gastric cancer is one of the most common malignant tumors, and chemotherapy is the main treatment for advanced gastric cancer. However, chemotherapy resistance leads to treatment failure and poor prognosis in patients with gastric cancer. Multidrug resistance (MDR) is a major challenge that needs to be overcome in chemotherapy. According to recent research, ferroptosis activation is crucial for tumor therapeutic strategies. In this work, we explored the solution to chemoresistance in gastric cancer by investigating the effects of the Chinese medicine monomer baicalin on ferroptosis. Baicalin with different concentrations was used to treat the parent HGC27 and drug-resistant HGC27/L cells of gastric cancer. Cell viability was measured by CCK8, and synergistic effects of baicalin combined with oxaliplatin were evaluated using Synergy Finder software. The effects of baicalin on organelles and cell morphology were investigated using projective electron microscopy. Iron concentration, MDA production and GSH inhibition rate were measured by colorimetry. ROS accumulation was detected by flow cytometry. The ferroptosis-related genes (IREB2, TfR, GPX4, FTH1), P53, and SLC7A11 were analysed by Western blot, and the expression differences of the above proteins between pretreatment and pretreatment of different concentrations of baicalin, were assayed in both parental HGC27 cells and Oxaliplatin-resistant HGC27/L cells. Mechanically, Baicalin disrupted iron homeostasis and inhibits antioxidant defense, resulting in iron accumulation, lipid peroxide aggregation, and specifically targeted and activated ferroptosis by upregulating the expression of tumor suppressor gene p53, thereby activating the SLC7A11/GPX4/ROS pathway mediated by it. Baicalin activates ferroptosis through multiple pathways and targets, thereby inhibiting the viability of oxaliplatin-resistant gastric cancer HGC27/L cells and enhancing the sensitivity to oxaliplatin chemotherapy.


Drug Resistance, Neoplasm , Ferroptosis , Flavonoids , Oxaliplatin , Stomach Neoplasms , Tumor Suppressor Protein p53 , Ferroptosis/drug effects , Humans , Flavonoids/pharmacology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Oxaliplatin/pharmacology , Drug Resistance, Neoplasm/drug effects , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Cell Line, Tumor , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Drug Synergism , Reactive Oxygen Species/metabolism , Gene Expression Regulation, Neoplastic/drug effects
7.
Respir Res ; 25(1): 205, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730297

BACKGROUND: Obesity is the main risk factor leading to the development of various respiratory diseases, such as asthma and pulmonary hypertension. Pulmonary microvascular endothelial cells (PMVECs) play a significant role in the development of lung diseases. Aconitate decarboxylase 1 (Acod1) mediates the production of itaconate, and Acod1/itaconate axis has been reported to play a protective role in multiple diseases. However, the roles of Acod1/itaconate axis in the PMVECs of obese mice are still unclear. METHODS: mRNA-seq was performed to identify the differentially expressed genes (DEGs) between high-fat diet (HFD)-induced PMVECs and chow-fed PMVECs in mice (|log2 fold change| ≥ 1, p ≤ 0.05). Free fatty acid (FFA) was used to induce cell injury, inflammation and mitochondrial oxidative stress in mouse PMVECs after transfection with the Acod1 overexpressed plasmid or 4-Octyl Itaconate (4-OI) administration. In addition, we investigated whether the nuclear factor erythroid 2-like 2 (Nrf2) pathway was involved in the effects of Acod1/itaconate in FFA-induced PMVECs. RESULTS: Down-regulated Acod1 was identified in HFD mouse PMVECs by mRNA-seq. Acod1 expression was also reduced in FFA-treated PMVECs. Acod1 overexpression inhibited cell injury, inflammation and mitochondrial oxidative stress induced by FFA in mouse PMVECs. 4-OI administration showed the consistent results in FFA-treated mouse PMVECs. Moreover, silencing Nrf2 reversed the effects of Acod1 overexpression and 4-OI administration in FFA-treated PMVECs, indicating that Nrf2 activation was required for the protective effects of Acod1/itaconate. CONCLUSION: Our results demonstrated that Acod1/Itaconate axis might protect mouse PMVECs from FFA-induced injury, inflammation and mitochondrial oxidative stress via activating Nrf2 pathway. It was meaningful for the treatment of obesity-caused pulmonary microvascular endotheliopathy.


Carboxy-Lyases , Endothelial Cells , Lung , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Obesity , Succinates , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Mice , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Endothelial Cells/pathology , Carboxy-Lyases/metabolism , Carboxy-Lyases/genetics , Obesity/metabolism , Obesity/complications , Male , Succinates/pharmacology , Lung/metabolism , Lung/drug effects , Lung/pathology , Lung/blood supply , Cells, Cultured , Microvessels/metabolism , Microvessels/drug effects , Microvessels/pathology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Diet, High-Fat/adverse effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/pathology , Hydro-Lyases
8.
Int J Biol Macromol ; 269(Pt 2): 131878, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38692530

Excessive accumulation of exudate from wounds often causes infection and hinders skin regeneration. To handle wound exudate quickly and prevent infection, we developed an antibacterial Janus nanofibrous dressing with a unidirectional water-transport function. The dressing consists of a hydrophilic chitosan aerogel (CS-A) as the outer layer and a hydrophobic laurylated chitosan (La-CS) nanofibrous membrane as the inner layer. These dressings achieved excellent liquid absorption performance (2987.8 ±â€¯123.5 %), air and moisture permeability (997.8 ±â€¯23.1 g/m2/day) and mechanical strength (5.1 ±â€¯2.6 MPa). This performance was obtained by adjusting the density of CS-A and the thickness of the La-CS membrane. Moreover, the dressing did not induce significant toxicity to cells and can prevent bacterial aggregation and infection at the wound site. Animal experiments showed that the dressing can shorten the inflammatory phase, enhance blood vessel generation, and accelerate collagen deposition, thus promoting wound healing. Overall, these results suggest that this Janus dressing is a promising material for clinical wound care.

9.
World J Gastrointest Oncol ; 16(5): 1773-1786, 2024 May 15.
Article En | MEDLINE | ID: mdl-38764839

BACKGROUND: The TRIANGLE operation involves the removal of all tissues within the triangle bounded by the portal vein-superior mesenteric vein, celiac axis-common hepatic artery, and superior mesenteric artery to improve patient prognosis. Although previously promising in patients with locally advanced pancreatic ductal adenocarcinoma (PDAC), data are limited regarding the long-term oncological outcomes of the TRIANGLE operation among resectable PDAC patients undergoing pancreaticoduodenectomy (PD). AIM: To evaluate the safety of the TRIANGLE operation during PD and the prognosis in patients with resectable PDAC. METHODS: This retrospective cohort study included patients who underwent PD for pancreatic head cancer between January 2017 and April 2023, with or without the TRIANGLE operation. Patients were divided into the PDTRIANGLE and PDnon-TRIANGLE groups. Surgical and survival outcomes were compared between the two groups. Adequate adjuvant chemotherapy was defined as adjuvant chemotherapy ≥ 6 months. RESULTS: The PDTRIANGLE and PDnon-TRIANGLE groups included 52 and 55 patients, respectively. There were no significant differences in the baseline characteristics or perioperative indexes between the two groups. Furthermore, the recurrence rate was lower in the PDTRIANGLE group than in the PDnon-TRIANGLE group (48.1% vs 81.8%, P < 0.001), and the local recurrence rate of PDAC decreased from 37.8% to 16.0%. Multivariate Cox regression analysis revealed that PDTRIANGLE (HR = 0.424; 95%CI: 0.256-0.702; P = 0.001), adequate adjuvant chemotherapy ≥ 6 months (HR = 0.370; 95%CI: 0.222-0.618; P < 0.001) and margin status (HR = 2.255; 95%CI: 1.252-4.064; P = 0.007) were found to be independent factors for the recurrence rate. CONCLUSION: The TRIANGLE operation is safe for PDAC patients undergoing PD. Moreover, it reduces the local recurrence rate of PDAC and may improve survival in patients who receive adequate adjuvant chemotherapy.

10.
Acta Biomater ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38734284

Atherosclerosis (AS), a pathological cause of cardiovascular disease, results from endothelial injury, local progressive inflammation, and excessive lipid accumulation. AS plaques rich in foam cells are prone to rupture and form thrombus, which can cause life-threatening complications. Therefore, the assessment of atherosclerotic plaque vulnerability and early intervention are crucial in reducing the mortality rates associated with cardiovascular disease. In this work, A fluorescent probe FC-TPA was synthesized, which switches the fluorescence state between protonated and non-protonated, reducing background fluorescence and enhancing imaging signal-to-noise ratio. On this basis, FC-TPA is loaded into cyclodextrin (CD) modified with phosphatidylserine targeting peptide (PTP) and coated with hyaluronic acid (HA) to construct the intelligent responsive diagnostic nanoplatform (HA@PCFT). HA@PCFT effectively targets atherosclerotic plaques, utilizing dual targeting mechanisms. HA binds strongly to CD44, while PTP binds to phosphatidylserine, enabling nanoparticle aggregation at the lesion site. ROS acts as a smart release switch for probes. Both in vitro and in vivo evaluations confirm impressive lipid-specific fluorescence imaging capabilities of HA@PCFT nanoparticles (NPs). The detection of lipid load in atherosclerotic plaque by fluorescence imaging will aid in assessing the vulnerability of atherosclerotic plaque. STATEMENT OF SIGNIFICANCE: Currently, numerous fluorescent probes have been developed for lipid imaging. However, some challenges including inadequate water solubility, nonspecific distribution patterns, and fluorescence background interference, have greatly limited their further applications in vivo. To overcome these limitations, a fluorescent molecule has been designed and synthesized, thoroughly investigating its photophysical properties through both theoretical and experimental approaches. Interestingly, this fluorescent molecule exhibits the reversible fluorescence switching capabilities, mediated by hydrogen bonds, which effectively mitigate background fluorescence interference. Additionally, the fluorescent molecules has been successfully loaded into nanocarriers functionalized with the active targeting abilities, which has significantly improved the solubility of the fluorescent molecules and reduced their nonspecific distribution in vivo for an efficient target imaging in atherosclerosis. This study provides a valuable reference for evaluating the performance of such fluorescent dyes, and offers a promising perspective on the design of the target delivery systems for atherosclerosis.

11.
Acta Derm Venereol ; 104: adv22146, 2024 May 13.
Article En | MEDLINE | ID: mdl-38738772

There are no standard treatment guidelines for hidradenocarcinoma, and the immune microenvironment and genomic data are very limited. Thus, in this study the immune microenvironment and genomic indicators in hidradenocarcinoma was investigated, and immunotherapy for hidradenocarcinoma was initially explored. Forty-seven hidradenocarcinoma patients were retrospectively collected. Immunohistochemical staining was performed to identify CD3/CD8+ T cells and programmed death ligand-1 expression. In total, 89.4% and 10.6% of samples had Immunoscores of 0-25% and 25-70%. Tumour proportion score distribution was as follows: tumour proportion score < 1% in 72.4%, 1-5% in 17.0%, and > 5% in 10.6%. Combined positive score distribution was as follows: combined positive score < 1 in 63.8%, 1-5 in 14.9%, and > 5 in 21.3%. Next-generation sequencing revealed that TP53 (33%), PI3KCA (22%), and ERBB3 (22%) were the most frequently mutated genes. The PI3K-Akt signalling pathway, growth, and MAPK signalling pathways were significantly enriched. Five patients had a low TMB (< 10 muts/Mb), and 9 patients had MSS. Three patients treated with immune combined with chemotherapy achieved significant tumour regression, and the progression-free survival was 28.8 months. In conclusion, the hidradenocarcinoma immune microenvironment tends to be noninflammatory. Evidence-based targets for targeted therapy are lacking. Immunotherapy combined with chemotherapy may be better for most advanced hidradenocarcinoma patients with a noninflammatory microenvironment.


Biomarkers, Tumor , Sweat Gland Neoplasms , Tumor Microenvironment , Humans , Retrospective Studies , Sweat Gland Neoplasms/genetics , Sweat Gland Neoplasms/pathology , Sweat Gland Neoplasms/therapy , Sweat Gland Neoplasms/immunology , Male , Female , Middle Aged , Adult , Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , Mutation , Treatment Outcome , Lymphocytes, Tumor-Infiltrating/immunology , B7-H1 Antigen , Immunotherapy/methods , Young Adult , Antineoplastic Agents, Immunological/therapeutic use
12.
Biomacromolecules ; 2024 May 21.
Article En | MEDLINE | ID: mdl-38771294

Preventing bacterial infections is a crucial aspect of wound healing. There is an urgent need for multifunctional biomaterials without antibiotics to promote wound healing. In this study, we fabricated a guar gum (GG)-based nanocomposite hydrogel, termed GBTF, which exhibited photothermal antibacterial therapy for infected wound healing. The GBTF hydrogel formed a cross-linked network through dynamic borate/diol interactions between GG and borax, thereby exhibiting simultaneously self-healing, adaptable, and injectable properties. Additionally, tannic acid (TA)/Fe3+ nanocomplexes (NCs) were incorporated into the hydrogel to confer photothermal antibacterial properties. Under the irradiation of an 808 nm near-infrared laser, the TA/Fe3+ NCs in the hydrogel could rapidly generate heat, leading to the disruption of bacterial cell membranes and subsequent bacterial eradication. Furthermore, the hydrogels exhibited good cytocompatibility and hemocompatibility, making them a precandidate for preclinical and clinical applications. Finally, they could significantly promote bacteria-infected wound healing by reducing bacterial viability, accelerating collagen deposition, and promoting epithelial remodeling. Therefore, the multifunctional GBTF hydrogel, which was composed entirely of natural substances including guar gum, borax, and polyphenol/ferric ion NCs, showed great potential for regenerating infected skin wounds in clinical applications.

13.
Mitochondrial DNA B Resour ; 9(5): 631-635, 2024.
Article En | MEDLINE | ID: mdl-38751733

In the present study, the complete mitochondrial genome (mitogenome) of the Papilio macilentus (Lepidoptera: Papilionoidea: Papilionidae) was sequenced by next-generation sequencing method. The mitochondrial genome is a circular DNA molecule of 15,264 bp in size with 80.7% AT content, including 37 genes (13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes), and a long non-coding region (Control region). All protein-coding genes are initiated by ATN codons, and terminated with TAA, TAG, or single T. All tRNAs can be folded into common clover leaf secondary structure, except trn-S1. Phylogenetic analyses based on 13 protein-coding genes and 2 rRNA genes using maximum likelihood and Bayesian inference confirmed that P. macilentus and Papilio memnon are clustered into a clade, and revealed the relationships between Papilionini, Troidini, Teinopaippini and Leptocircini.

14.
Cell Commun Signal ; 22(1): 271, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750493

BACKGROUND: Macrophages are key inflammatory immune cells that orchestrate the initiation and progression of autoimmune diseases. The characters of macrophage in diseases are determined by its phenotype in response to the local microenvironment. Ficolins have been confirmed as crucial contributors to autoimmune diseases, with Ficolin-2 being particularly elevated in patients with autoimmune diseases. However, whether Ficolin-A stimulates macrophage polarization is still poorly understood. METHODS: We investigated the transcriptomic expression profile of murine bone marrow-derived macrophages (BMDMs) stimulated with Ficolin-A using RNA-sequencing. To further confirm a distinct phenotype activated by Ficolin-A, quantitative RT-PCR and Luminex assay were performed in this study. Additionally, we assessed the activation of underlying cell signaling pathways triggered by Ficolin-A. Finally, the impact of Ficolin-A on macrophages were investigated in vivo through building Collagen-induced arthritis (CIA) and Dextran Sulfate Sodium Salt (DSS)-induced colitis mouse models with Fcna-/- mice. RESULTS: Ficolin-A activated macrophages into a pro-inflammatory phenotype distinct to LPS-, IFN-γ- and IFN-γ + LPS-induced phenotypes. The transcriptomic profile induced by Ficolin-A was primarily characterized by upregulation of interleukins, chemokines, iNOS, and Arginase 1, along with downregulation of CD86 and CD206, setting it apart from the M1 and M2 phenotypes. The activation effect of Ficolin-A on macrophages deteriorated the symptoms of CIA and DSS mouse models, and the deletion of Fcna significantly alleviated the severity of diseases in mice. CONCLUSION: Our work used transcriptomic analysis by RNA-Seq to investigate the impact of Ficolin-A on macrophage polarization. Our findings demonstrate that Ficolin-A induces a novel pro-inflammatory phenotype distinct to the phenotypes activated by LPS, IFN-γ and IFN-γ + LPS on macrophages.


Ficolins , Inflammation , Lectins , Macrophages , Mice, Inbred C57BL , Phenotype , Animals , Macrophages/metabolism , Macrophages/drug effects , Lectins/genetics , Lectins/metabolism , Mice , Inflammation/genetics , Inflammation/pathology , Macrophage Activation/drug effects , Colitis/chemically induced , Colitis/pathology , Colitis/genetics , Cell Polarity/drug effects , Arthritis, Experimental/genetics , Arthritis, Experimental/pathology , Signal Transduction/drug effects
15.
Transl Oncol ; 45: 101986, 2024 May 08.
Article En | MEDLINE | ID: mdl-38723299

Microvascular invasion (MVI) is an adverse prognostic indicator of tumor recurrence after surgery for hepatocellular carcinoma (HCC). Therefore, developing a nomogram for estimating the presence of MVI before liver resection is necessary. We retrospectively included 260 patients with pathologically confirmed HCC at the Fifth Medical Center of Chinese PLA General Hospital between January 2021 and April 2024. The patients were randomly divided into a training cohort (n = 182) for nomogram development, and a validation cohort (n = 78) to confirm the performance of the model (7:3 ratio). Significant clinical variables associated with MVI were then incorporated into the predictive nomogram using both univariate and multivariate logistic analyses. The predictive performance of the nomogram was assessed based on its discrimination, calibration, and clinical utility. Serum carnosine dipeptidase 1 ([CNDP1] OR 2.973; 95 % CI 1.167-7.575; p = 0.022), cirrhosis (OR 8.911; 95 % CI 1.922-41.318; p = 0.005), multiple tumors (OR 4.095; 95 % CI 1.374-12.205; p = 0.011), and tumor diameter ≥3 cm (OR 4.408; 95 % CI 1.780-10.919; p = 0.001) were independent predictors of MVI. Performance of the nomogram based on serum CNDP1, cirrhosis, number of tumors and tumor diameter was achieved with a concordance index of 0.833 (95 % CI 0.771-0.894) and 0.821 (95 % CI 0.720-0.922) in the training and validation cohorts, respectively. It fitted well in the calibration curves, and the decision curve analysis further confirmed its clinical usefulness. The nomogram, incorporating significant clinical variables and imaging features, successfully predicted the personalized risk of MVI in HCC preoperatively.

16.
Pharmacol Res ; 204: 107202, 2024 May 03.
Article En | MEDLINE | ID: mdl-38704110

Plant-derived extracellular vesicles (PDEV) constitute nanoscale entities comprising lipids, proteins, nucleic acids and various components enveloped by the lipid bilayers of plant cells. These vesicles play a crucial role in facilitating substance and information transfer not only between plant cells but also across different species. Owing to its safety, stability, and the abundance of raw materials, this substance has found extensive utilization in recent years within research endeavors aimed at treating various diseases. This article provides an overview of the pathways and biological characteristics of PDEV, along with the prevalent methods employed for its isolation, purification, and storage. Furthermore, we comprehensively outline the therapeutic implications of diverse sources of PDEV in musculoskeletal system disorders. Additionally, we explore the utilization of PDEV as platforms for engineering drug carriers, aiming to delve deeper into the significance and potential contributions of PDEV in the realm of the musculoskeletal system.

17.
Nurse Educ Today ; 139: 106216, 2024 Apr 21.
Article En | MEDLINE | ID: mdl-38696883

OBJECTIVE: This study aimed to investigate the experiences of Chinese midwives during traumatic birth experiences and their impact. By doing so, we hope to develop effective empathetic educational strategies and provide valuable insights to improve the midwifery support system in China. METHODS: This study adopted Colaizzi's phenomenological approach, which aimed to understand and explore human experiences from the standpoint of the participants. A purposive sampling method was used to select 16 midwives for semi-structured interviews. The Colaizzi 7-step method was used to analyze the interview data. FINDINGS: Three themes and eight sub-themes were developed by analyzing and integrating the interview data. These included intertwined negative experiences (self-blame and guilt, regurgitated disturbances, intense and persistent physical and psychological discomfort, and low confidence in midwifery decision-making behaviours), the coexistence of positive effects (increased ability to tolerate life uncertainty, increased sense of control in coping with traumatic birth experiences), and needs and expectations (confiding in co-workers, an expectation of professional psychological support interventions). CONCLUSIONS: The experiences of midwives in showing empathy during traumatic birth experiences are complex and multifaceted. It is crucial to recognize and address negative empathic experiences, provide coping strategies, and enhance positive empathic experiences. Midwives' grief counselling competence education should be strengthened, as should their psychological well-being and the midwifery support system.

18.
Eur J Med Res ; 29(1): 266, 2024 May 03.
Article En | MEDLINE | ID: mdl-38698469

BACKGROUND: Fatigue is a relatively prevalent condition among hemodialysis patients, resulting in diminished health-related quality of life and decreased survival rates. The purpose of this study was to investigate the relationship between fatigue and body composition in hemodialysis patients. METHODS: This cross-sectional study included 92 patients in total. Fatigue was measured by Functional Assessment of Chronic Illness Therapy - Fatigue (FACIT-F) (cut-off ≤ 34). Body composition was measured based on quantitative computed tomography (QCT), parameters including skeletal muscle index (SMI), intermuscular adipose tissue (IMAT), and bone mineral density (BMD). Handgrip strength was also collected. To explore the relationship between fatigue and body composition parameters, we conducted correlation analyses and binary logistic regression. RESULTS: The prevalence of fatigue was 37% (n = 34), abnormal bone density was 43.4% (n = 40). There was a positive correlation between handgrip strength and FACIT-F score (r = 0.448, p < 0.001). Age (r = - 0.411, p < 0.001), IMAT % (r = - 0.424, p < 0.001), negatively associated with FACIT-F score. Multivariate logistic regression analysis shows that older age, lower serum phosphorus, higher IMAT% are associated with a high risk of fatigue. CONCLUSION: The significantly increased incidence and degree of fatigue in hemodialysis patients is associated with more intermuscular adipose tissue in paraspinal muscle.


Body Composition , Fatigue , Muscle Strength , Renal Dialysis , Humans , Renal Dialysis/adverse effects , Male , Female , Middle Aged , Fatigue/physiopathology , Fatigue/etiology , Cross-Sectional Studies , Muscle Strength/physiology , Aged , Hand Strength/physiology , Bone Density , Adult , Muscle, Skeletal/physiopathology , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/physiopathology
19.
Heliyon ; 10(9): e29836, 2024 May 15.
Article En | MEDLINE | ID: mdl-38698980

With the development of biological control methods, the predatory ladybird beetle Harmonia axyridis Pallas (Coleoptera: Coccinellidae) has been widely used for pest control in agricultural production. Appropriate shelf-life management strategies could synchronize H. axyridis production with pest outbreaks, finally improving the effectiveness of biological control. Herein, we preliminarily explored whether an artificial diet could optimize the shelf-life management of H. axyridis. We compared the survival rate, nutrition accumulation, reproductive development, juvenile hormone (JH) related-gene expression levels, and stress resistance gene expression levels between aphid-fed and artificial diet-fed H. axyridis females. The results revealed that H. axyridis females maintained a high survival rate after being fed an artificial diet for 60 days, whereas the survival rate of aphid-fed females decreased. Continuous feeding of the artificial diet caused H. axyridis females to enter a diapause-like state, which was characterized by low JH levels, high triglycerides and trehalose accumulation, ovarian development inhibition, decreased Vgs expression levels, and increased stress resistance gene expression levels. This diapause-like state could be promptly recovered upon transferring to an aphid diet. These results indicate that the artificial diet could manipulate the reproductive development status of H. axyridis and lay the foundation for its shelf-life management.

20.
Brain ; 2024 May 03.
Article En | MEDLINE | ID: mdl-38701344

The implication of 5-hydroxytryptamine 2C receptor (5-HT2CR) in depression is a topic of debate, and the underlying mechanisms remain largely unclear. We now elucidate hippocampal excitation-inhibition (E/I) balance underlies the regulatory effects of 5-HT2CR in depression. Molecular biological analyses showed that chronic mild stress (CMS) reduced the expression of 5-HT2CR in hippocampus. We revealed that inhibition of 5-HT2CR induced depressive-like behaviors, reduced GABA release and shifted the E/I balance towards excitation in CA3 pyramidal neurons by using behavioral analyses, microdialysis coupled with mass spectrum, and electrophysiological recording. Moreover, 5-HT2CR modulated neuronal nitric oxide synthase (nNOS)-carboxy-terminal PDZ ligand of nNOS (CAPON) interaction through influencing intracellular Ca2+ release, as determined by fiber photometry and coimmunoprecipitation. Notably, disruption of nNOS-CAPON by specific small molecule compound ZLc-002 or AAV-CMV-CAPON-125C-GFP, abolished 5-HT2CR inhibition-induced depressive-like behaviors, as well as the impairment in soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly-mediated GABA vesicle release and a consequent E/I imbalance. Importantly, optogenetic inhibition of CA3 GABAergic neurons prevented the effects of AAV-CMV-CAPON-125C-GFP on depressive behaviors in the presence of 5-HT2CR antagonist. Conclusively, our findings disclose the regulatory role of 5-HT2CR in depressive-like behaviors and highlight the hippocampal nNOS-CAPON coupling-triggered E/I imbalance as a pivotal cellular event underpinning the behavioral consequences of 5-HT2CR inhibition.

...