Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Brief Bioinform ; 22(1): 474-484, 2021 01 18.
Article En | MEDLINE | ID: mdl-31885044

BACKGROUND: With the increasing development of biotechnology and information technology, publicly available data in chemistry and biology are undergoing explosive growth. Such wealthy information in these resources needs to be extracted and then transformed to useful knowledge by various data mining methods. However, a main computational challenge is how to effectively represent or encode molecular objects under investigation such as chemicals, proteins, DNAs and even complicated interactions when data mining methods are employed. To further explore these complicated data, an integrated toolkit to represent different types of molecular objects and support various data mining algorithms is urgently needed. RESULTS: We developed a freely available R/CRAN package, called BioMedR, for molecular representations of chemicals, proteins, DNAs and pairwise samples of their interactions. The current version of BioMedR could calculate 293 molecular descriptors and 13 kinds of molecular fingerprints for small molecules, 9920 protein descriptors based on protein sequences and six types of generalized scale-based descriptors for proteochemometric modeling, more than 6000 DNA descriptors from nucleotide sequences and six types of interaction descriptors using three different combining strategies. Moreover, this package realized five similarity calculation methods and four powerful clustering algorithms as well as several useful auxiliary tools, which aims at building an integrated analysis pipeline for data acquisition, data checking, descriptor calculation and data modeling. CONCLUSION: BioMedR provides a comprehensive and uniform R package to link up different representations of molecular objects with each other and will benefit cheminformatics/bioinformatics and other biomedical users. It is available at: https://CRAN.R-project.org/package=BioMedR and https://github.com/wind22zhu/BioMedR/.


Computational Biology/methods , Database Management Systems , Data Management/methods , Databases, Chemical , Databases, Genetic , Humans
2.
J Cheminform ; 9(1): 27, 2017 May 04.
Article En | MEDLINE | ID: mdl-29086046

BACKGROUND: In recent years, predictive models based on machine learning techniques have proven to be feasible and effective in drug discovery. However, to develop such a model, researchers usually have to combine multiple tools and undergo several different steps (e.g., RDKit or ChemoPy package for molecular descriptor calculation, ChemAxon Standardizer for structure preprocessing, scikit-learn package for model building, and ggplot2 package for statistical analysis and visualization, etc.). In addition, it may require strong programming skills to accomplish these jobs, which poses severe challenges for users without advanced training in computer programming. Therefore, an online pipelining platform that integrates a number of selected tools is a valuable and efficient solution that can meet the needs of related researchers. RESULTS: This work presents a web-based pipelining platform, called ChemSAR, for generating SAR classification models of small molecules. The capabilities of ChemSAR include the validation and standardization of chemical structure representation, the computation of 783 1D/2D molecular descriptors and ten types of widely-used fingerprints for small molecules, the filtering methods for feature selection, the generation of predictive models via a step-by-step job submission process, model interpretation in terms of feature importance and tree visualization, as well as a helpful report generation system. The results can be visualized as high-quality plots and downloaded as local files. CONCLUSION: ChemSAR provides an integrated web-based platform for generating SAR classification models that will benefit cheminformatics and other biomedical users. It is freely available at: http://chemsar.scbdd.com . Graphical abstract .

3.
J Cheminform ; 8: 34, 2016.
Article En | MEDLINE | ID: mdl-27330567

BACKGROUND: More and more evidences from network biology indicate that most cellular components exert their functions through interactions with other cellular components, such as proteins, DNAs, RNAs and small molecules. The rapidly increasing amount of publicly available data in biology and chemistry enables researchers to revisit interaction problems by systematic integration and analysis of heterogeneous data. Currently, some tools have been developed to represent these components. However, they have some limitations and only focus on the analysis of either small molecules or proteins or DNAs/RNAs. To the best of our knowledge, there is still a lack of freely-available, easy-to-use and integrated platforms for generating molecular descriptors of DNAs/RNAs, proteins, small molecules and their interactions. RESULTS: Herein, we developed a comprehensive molecular representation platform, called BioTriangle, to emphasize the integration of cheminformatics and bioinformatics into a molecular informatics platform for computational biology study. It contains a feature-rich toolkit used for the characterization of various biological molecules and complex interaction samples including chemicals, proteins, DNAs/RNAs and even their interactions. By using BioTriangle, users are able to start a full pipelining from getting molecular data, molecular representation to constructing machine learning models conveniently. CONCLUSION: BioTriangle provides a user-friendly interface to calculate various features of biological molecules and complex interaction samples conveniently. The computing tasks can be submitted and performed simply in a browser without any sophisticated installation and configuration process. BioTriangle is freely available at http://biotriangle.scbdd.com.Graphical abstractAn overview of BioTriangle. A platform for generating various molecular representations for chemicals, proteins, DNAs/RNAs and their interactions.

4.
J Comput Aided Mol Des ; 30(5): 413-24, 2016 05.
Article En | MEDLINE | ID: mdl-27167132

Drug-target interactions (DTIs) are central to current drug discovery processes and public health fields. Analyzing the DTI profiling of the drugs helps to infer drug indications, adverse drug reactions, drug-drug interactions, and drug mode of actions. Therefore, it is of high importance to reliably and fast predict DTI profiling of the drugs on a genome-scale level. Here, we develop the TargetNet server, which can make real-time DTI predictions based only on molecular structures, following the spirit of multi-target SAR methodology. Naïve Bayes models together with various molecular fingerprints were employed to construct prediction models. Ensemble learning from these fingerprints was also provided to improve the prediction ability. When the user submits a molecule, the server will predict the activity of the user's molecule across 623 human proteins by the established high quality SAR model, thus generating a DTI profiling that can be used as a feature vector of chemicals for wide applications. The 623 SAR models related to 623 human proteins were strictly evaluated and validated by several model validation strategies, resulting in the AUC scores of 75-100 %. We applied the generated DTI profiling to successfully predict potential targets, toxicity classification, drug-drug interactions, and drug mode of action, which sufficiently demonstrated the wide application value of the potential DTI profiling. The TargetNet webserver is designed based on the Django framework in Python, and is freely accessible at http://targetnet.scbdd.com .


Drug Discovery , Pharmaceutical Preparations/chemistry , Protein Binding , Proteins/chemistry , Algorithms , Bayes Theorem , Drug Interactions , Drug-Related Side Effects and Adverse Reactions , Humans , Internet , Models, Theoretical , Pharmaceutical Preparations/metabolism , Proteins/metabolism , Software
5.
J Chem Inf Model ; 56(4): 763-73, 2016 04 25.
Article En | MEDLINE | ID: mdl-27018227

The Caco-2 cell monolayer model is a popular surrogate in predicting the in vitro human intestinal permeability of a drug due to its morphological and functional similarity with human enterocytes. A quantitative structure-property relationship (QSPR) study was carried out to predict Caco-2 cell permeability of a large data set consisting of 1272 compounds. Four different methods including multivariate linear regression (MLR), partial least-squares (PLS), support vector machine (SVM) regression and Boosting were employed to build prediction models with 30 molecular descriptors selected by nondominated sorting genetic algorithm-II (NSGA-II). The best Boosting model was obtained finally with R(2) = 0.97, RMSEF = 0.12, Q(2) = 0.83, RMSECV = 0.31 for the training set and RT(2) = 0.81, RMSET = 0.31 for the test set. A series of validation methods were used to assess the robustness and predictive ability of our model according to the OECD principles and then define its applicability domain. Compared with the reported QSAR/QSPR models about Caco-2 cell permeability, our model exhibits certain advantage in database size and prediction accuracy to some extent. Finally, we found that the polar volume, the hydrogen bond donor, the surface area and some other descriptors can influence the Caco-2 permeability to some extent. These results suggest that the proposed model is a good tool for predicting the permeability of drug candidates and to perform virtual screening in the early stage of drug development.


Absorption, Physicochemical , Drug Discovery/methods , Models, Molecular , Biological Availability , Caco-2 Cells , Humans , Molecular Conformation , Permeability , Quantitative Structure-Activity Relationship
6.
Bioinformatics ; 31(11): 1857-9, 2015 Jun 01.
Article En | MEDLINE | ID: mdl-25619996

UNLABELLED: Amino acid sequence-derived structural and physiochemical descriptors are extensively utilized for the research of structural, functional, expression and interaction profiles of proteins and peptides. We developed protr, a comprehensive R package for generating various numerical representation schemes of proteins and peptides from amino acid sequence. The package calculates eight descriptor groups composed of 22 types of commonly used descriptors that include about 22 700 descriptor values. It allows users to select amino acid properties from the AAindex database, and use self-defined properties to construct customized descriptors. For proteochemometric modeling, it calculates six types of scales-based descriptors derived by various dimensionality reduction methods. The protr package also integrates the functionality of similarity score computation derived by protein sequence alignment and Gene Ontology semantic similarity measures within a list of proteins, and calculates profile-based protein features based on position-specific scoring matrix. We also developed ProtrWeb, a user-friendly web server for calculating descriptors presented in the protr package. AVAILABILITY AND IMPLEMENTATION: The protr package is freely available from CRAN: http://cran.r-project.org/package=protr, ProtrWeb, is freely available at http://protrweb.scbdd.com/.


Peptides/chemistry , Proteins/chemistry , Sequence Analysis, Protein/methods , Software , Amino Acids/chemistry , Internet , Position-Specific Scoring Matrices , Protein Conformation , Sequence Alignment
...