Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Eur Radiol ; 34(3): 2048-2061, 2024 Mar.
Article En | MEDLINE | ID: mdl-37658883

OBJECTIVES: With the popularization of chest computed tomography (CT) screening, there are more sub-centimeter (≤ 1 cm) pulmonary nodules (SCPNs) requiring further diagnostic workup. This area represents an important opportunity to optimize the SCPN management algorithm avoiding "one-size fits all" approach. One critical problem is how to learn the discriminative multi-view characteristics and the unique context of each SCPN. METHODS: Here, we propose a multi-view coupled self-attention module (MVCS) to capture the global spatial context of the CT image through modeling the association order of space and dimension. Compared with existing self-attention methods, MVCS uses less memory consumption and computational complexity, unearths dimension correlations that previous methods have not found, and is easy to integrate with other frameworks. RESULTS: In total, a public dataset LUNA16 from LIDC-IDRI, 1319 SCPNs from 1069 patients presenting to a major referral center, and 160 SCPNs from 137 patients from three other major centers were analyzed to pre-train, train, and validate the model. Experimental results showed that performance outperforms the state-of-the-art models in terms of accuracy and stability and is comparable to that of human experts in classifying precancerous lesions and invasive adenocarcinoma. We also provide a fusion MVCS network (MVCSN) by combining the CT image with the clinical characteristics and radiographic features of patients. CONCLUSION: This tool may ultimately aid in expediting resection of the malignant SCPNs and avoid over-diagnosis of the benign ones, resulting in improved management outcomes. CLINICAL RELEVANCE STATEMENT: In the diagnosis of sub-centimeter lung adenocarcinoma, fusion MVCSN can help doctors improve work efficiency and guide their treatment decisions to a certain extent. KEY POINTS: • Advances in computed tomography (CT) not only increase the number of nodules detected, but also the nodules that are identified are smaller, such as sub-centimeter pulmonary nodules (SCPNs). • We propose a multi-view coupled self-attention module (MVCS), which could model spatial and dimensional correlations sequentially for learning global spatial contexts, which is better than other attention mechanisms. • MVCS uses fewer huge memory consumption and computational complexity than the existing self-attention methods when dealing with 3D medical image data. Additionally, it reaches promising accuracy for SCPNs' malignancy evaluation and has lower training cost than other models.


Deep Learning , Lung Neoplasms , Multiple Pulmonary Nodules , Precancerous Conditions , Solitary Pulmonary Nodule , Humans , Overdiagnosis , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/surgery , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/surgery , Multiple Pulmonary Nodules/pathology , Algorithms , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/surgery , Radiographic Image Interpretation, Computer-Assisted/methods , Lung/pathology
2.
Front Pharmacol ; 14: 1257345, 2023.
Article En | MEDLINE | ID: mdl-38044944

Background and aims: Chinese herbal medicine (CHM) was used to prevent and treat coronavirus disease 2019 (COVID-19) in clinical practices. Many studies have demonstrated that the combination of CHM and Western medicine can be more effective in treating COVID-19 compared to Western medicine alone. However, evidence-based studies on the prevention in undiagnosed or suspected cases remain scarce. This systematic review and meta-analysis aimed to investigate the effectiveness of CHM in preventing recurrent, new, or suspected COVID-19 diseases. Methods: We conducted a comprehensive search using ten databases including articles published between December 2019 and September 2023. This search aimed to identify studies investigating the use of CHM to prevent COVID-19. Heterogeneity was assessed by a random-effects model. The relative risk (RR) and mean differences were calculated using 95% confidence intervals (CI). The modified Jadad Scale and the Newcastle-Ottawa Scale (NOS) were employed to evaluate the quality of randomized controlled trials and cohort studies, respectively. Results: Seventeen studies with a total of 47,351 patients were included. Results revealed that CHM significantly reduced the incidence of COVID-19 (RR = 0.24, 95% CI = 0.11-0.53, p = 0.0004), influenza (RR = 0.37, 95% CI = 0.18-0.76, p = 0.007), and severe pneumonia exacerbation rate (RR = 0.17, 95% CI = 0.05-0.64, p = 0.009) compared to non-treatment or conventional control group. Evidence evaluation indicated moderate quality evidence for COVID-19 incidence and serum complement components C3 and C4 in randomized controlled trials. For the incidence of influenza and severe pneumonia in RCTs as well as the ratio of CD4+/CD8+ lymphocytes, the evidence quality was low. The remaining outcomes including the disappearance rate of symptoms and adverse reactions were deemed to be of very low quality. Conclusion: CHM presents a promising therapeutic option for the prevention of COVID-19. However, additional high-quality clinical trials are needed to further strengthen evidential integrity.

3.
Article En | MEDLINE | ID: mdl-37930928

Cell localization still faces two unresolved challenges: 1) the dramatic variations in cell morphology, coupled with the heterogeneous intensity distribution of lightly stained cells; 2) existing cell location maps lack scale information, resulting in insufficient supervision for point maps and inaccurate supervision for density maps. 1) To address the first challenges, we introduce a novel gradient-aware and shape-adaptive Difference-Deformable Convolution (DDConv), which enhances the model's robustness to color by leveraging gradient information while adaptively adjusting the shape of the convolutional kernel to tackle the substantial variability in cell morphology. 2) To overcome the issue of unreasonable location maps, we propose the Pseudo-Scale Instance (PSI) map, which can adaptively provide the corresponding scale information for each cell to realize accurate supervision. We analyze and evaluate DDConv and the PSI map in three challenging cell localization tasks. In comparison to existing methods, our proposed approach significantly enhances localization performance, setting a new benchmark for the cell localization task. Our code is available at https://github.com/ChyaZhang/DDConv-PSI.

4.
IEEE J Biomed Health Inform ; 27(1): 386-396, 2023 01.
Article En | MEDLINE | ID: mdl-36350857

Automatic and accurate differentiation of liver lesions from multi-phase computed tomography imaging is critical for the early detection of liver cancer. Multi-phase data can provide more diagnostic information than single-phase data, and the effective use of multi-phase data can significantly improve diagnostic accuracy. Current fusion methods usually fuse multi-phase information at the image level or feature level, ignoring the specificity of each modality, therefore, the information integration capacity is always limited. In this paper, we propose a Knowledge-guided framework, named MCCNet, which adaptively integrates multi-phase liver lesion information from three different stages to fully utilize and fuse multi-phase liver information. Specifically, 1) a multi-phase self-attention module was designed to adaptively combine and integrate complementary information from three phases using multi-level phase features; 2) a cross-feature interaction module was proposed to further integrate multi-phase fine-grained features from a global perspective; 3) a cross-lesion correlation module was proposed for the first time to imitate the clinical diagnosis process by exploiting inter-lesion correlation in the same patient. By integrating the above three modules into a 3D backbone, we constructed a lesion classification network. The proposed lesion classification network was validated on an in-house dataset containing 3,683 lesions from 2,333 patients in 9 hospitals. Extensive experimental results and evaluations on real-world clinical applications demonstrate the effectiveness of the proposed modules in exploiting and fusing multi-phase information.


Hospitals , Liver Neoplasms , Humans , Knowledge , Tomography, X-Ray Computed , Image Processing, Computer-Assisted
5.
IEEE Trans Med Imaging ; 39(3): 753-763, 2020 03.
Article En | MEDLINE | ID: mdl-31425022

Accurate segmentation of the prostate from magnetic resonance (MR) images provides useful information for prostate cancer diagnosis and treatment. However, automated prostate segmentation from 3D MR images faces several challenges. The lack of clear edge between the prostate and other anatomical structures makes it challenging to accurately extract the boundaries. The complex background texture and large variation in size, shape and intensity distribution of the prostate itself make segmentation even further complicated. Recently, as deep learning, especially convolutional neural networks (CNNs), emerging as the best performed methods for medical image segmentation, the difficulty in obtaining large number of annotated medical images for training CNNs has become much more pronounced than ever. Since large-scale dataset is one of the critical components for the success of deep learning, lack of sufficient training data makes it difficult to fully train complex CNNs. To tackle the above challenges, in this paper, we propose a boundary-weighted domain adaptive neural network (BOWDA-Net). To make the network more sensitive to the boundaries during segmentation, a boundary-weighted segmentation loss is proposed. Furthermore, an advanced boundary-weighted transfer leaning approach is introduced to address the problem of small medical imaging datasets. We evaluate our proposed model on three different MR prostate datasets. The experimental results demonstrate that the proposed model is more sensitive to object boundaries and outperformed other state-of-the-art methods.


Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Databases, Factual , Deep Learning , Humans , Male , Prostate/diagnostic imaging , Prostatic Neoplasms/diagnostic imaging
...