Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.848
1.
Endocr Pract ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38734410

OBJECTIVE: White matter lesions (WMLs) increase the risk of stroke, stroke recurrence, and death. Higher plasma aldosterone concentration (PAC) increases the risk of stroke, acute myocardial infarction, and hypertension. To evaluate the relationship between PAC and cerebrovascular events in patients with hypertension and WMLs. METHODS: We conducted a retrospective cohort study that included 1041 participants hospitalized. The outcome was new-onset cerebrovascular events including intracerebral hemorrhage and stroke. A Cox regression model was used to evaluate the relationship between baseline PAC and the risk of cerebrovascular events. RESULTS: The mean age of participants was 60.9±10.2 years, and 565 (53.4%) were males. The median follow-up duration was 42 months (interquartile range [IQR]: 25-67), and 92 patients experienced new-onset cerebrovascular events. In a multivariate-adjusted model, with PAC as a continuous variable, higher PAC increased the risk of cerebrovascular events; patient risk increased per 1 (hazard ratio [HR: 1.03], 95% confidence interval [CI]: 1.01-1.06, P < 0.01), per 5 (HR: 1.17, 95% CI: 1.06-1.31, P < 0.01), and per 10 ng/dL (HR: 1.41, 95%: 1.14-1.75, P < 0.01) increase in PAC. When PAC was expressed as a categorical variable (quartile: Q1-Q4), patients in Q4 (HR: 2.12, 95% CI: 1.18-3.79, P < 0.05) exhibited an increased risk of cerebrovascular events compared to Q1. Restrictive spline regression showed a linear association between PAC and the risk of new-onset cerebrovascular events after adjusting for all possible variables. CONCLUSIONS: Our study identified a linear association between PAC and the risk of new-onset cerebrovascular events in patients with hypertension and WMLs.

2.
Adv Sci (Weinh) ; : e2402824, 2024 May 05.
Article En | MEDLINE | ID: mdl-38704682

Creatures, such as Venus flytrap and hummingbirds, capable of rapid predation through snap-through transition, provide paradigms for the design of soft actuators and robots with fast actions. However, these artificial "snappers" usually need contact stimulations to trigger the flipping. Reported here is a constrained anisotropic poly(N-isopropylacrylamide) hydrogel showing fast snapping upon light stimulation. This hydrogel is prepared by flow-induced orientation of nanosheets (NSs) within a rectangular tube. The precursor containing gold nanoparticles is immediately exposed to UV light for photopolymerization to fix the ordered structure of NSs. Two ends of the slender gel are clamped to form a buckle with bistability nature, which snaps to the other side upon laser irradiation. Systematic experiments are conducted to investigate the influences of power intensity and irradiation angle of the laser, as well as thickness and buckle height of the gel, on the snapping behaviors. The fast snapping is further used to kick a plastic bead and control the switch state. Furthermore, synergetic or oscillated snapping of the gel with two buckles of opposite directions is realized by inclined irradiation of a laser or horizontal irradiation with two lasers, respectively. Such light-steered snapping of hydrogels should merit designing soft robots, energy harvests, etc.

3.
Plants (Basel) ; 13(9)2024 May 05.
Article En | MEDLINE | ID: mdl-38732488

Dioscorea alata, commonly known as "greater yam", is a vital crop in tropical and subtropical regions of the world, yet it faces significant threats from anthracnose disease, mainly caused by Colletotrichum gloeosporioides. However, exploring disease resistance genes in this species has been challenging due to the difficulty of genetic mapping resulting from the loss of the flowering trait in many varieties. The receptor-like kinase (RLK) gene family represents essential immune receptors in plants. In this study, genomic analysis revealed 467 RLK genes in D. alata. The identified RLKs were distributed unevenly across chromosomes, likely due to tandem duplication events. However, a considerable number of ancient whole-genome or segmental duplications dating back over 100 million years contributed to the diversity of RLK genes. Phylogenetic analysis unveiled at least 356 ancient RLK lineages in the common ancestor of Dioscoreaceae, which differentially inherited and expanded to form the current RLK profiles of D. alata and its relatives. The analysis of cis-regulatory elements indicated the involvement of RLK genes in diverse stress responses. Transcriptome analysis identified RLKs that were up-regulated in response to C. gloeosporioides infection, suggesting their potential role in resisting anthracnose disease. These findings provide novel insights into the evolution of RLK genes in D. alata and their potential contribution to disease resistance.

4.
Cell Death Dis ; 15(5): 336, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744865

Fibrosis is a reparative and progressive process characterized by abnormal extracellular matrix deposition, contributing to organ dysfunction in chronic diseases. The tumor suppressor p53 (p53), known for its regulatory roles in cell proliferation, apoptosis, aging, and metabolism across diverse tissues, appears to play a pivotal role in aggravating biological processes such as epithelial-mesenchymal transition (EMT), cell apoptosis, and cell senescence. These processes are closely intertwined with the pathogenesis of fibrotic disease. In this review, we briefly introduce the background and specific mechanism of p53, investigate the pathogenesis of fibrosis, and further discuss p53's relationship and role in fibrosis affecting the kidney, liver, lung, and heart. In summary, targeting p53 represents a promising and innovative therapeutic approach for the prevention and treatment of organ fibrosis.


Fibrosis , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/metabolism , Animals , Epithelial-Mesenchymal Transition , Apoptosis , Molecular Targeted Therapy
5.
J Infect Dis ; 2024 May 08.
Article En | MEDLINE | ID: mdl-38716969

BACKGROUND: Monoclonal antibodies (mAbs) represent a crucial antiviral strategy for SARS-CoV-2 infection, but it is unclear whether combination mAbs offer a benefit over single-active mAb treatment. Amubarvimab and romlusevimab significantly reduced the risk of hospitalizations or death in the ACTIV-2/A5401 trial. Certain SARS-CoV-2 variants are intrinsically resistant against romlusevimab, leading to only single-active mAb therapy with amubarvimab in these variants. We evaluated virologic outcomes in individuals treated with single- versus dual-active mAbs. METHODS: Participants were non-hospitalized adults at higher risk of clinical progression randomized to amubarvimab plus romlusevimab or placebo. Quantitative SARS-CoV-2 RNA levels and targeted S gene next-generation sequencing was performed on anterior nasal samples. We compared viral load kinetics and resistance emergence between individuals treated with effective single- versus dual-active mAbs depending on the infecting variant. RESULTS: Study participants receiving single- and dual-active mAbs had similar demographics, baseline nasal viral load, symptom score, and symptom duration. Compared to single-active mAb, treatment with dual-active mAbs led to faster viral load decline at study day 3 (p < 0.001) and day 7 (p < 0.01). Treatment-emergent resistance mutations were more likely to be detected after amubarvimab plus romlusevimab treatment than placebo (2.6% vs 0%, P < 0.001), and more frequently detected in the setting of single-active compared to dual-active mAb treatment (7.2% vs 1.1%, p < 0.01). Single-active and dual-active mAb treatment resulted in similar decrease in rates of hospitalizations or death. CONCLUSION: Compared to single-active mAb therapy, dual-active mAbs led to similar clinical outcomes, but significantly faster viral load decline and a lower risk of emergent resistance.

6.
Heliyon ; 10(9): e29899, 2024 May 15.
Article En | MEDLINE | ID: mdl-38699020

While the 5-year survival rate of patients with advanced non-small cell lung cancer (NSCLC) has seen some improvement, the majority of NSCLC patients fail to respond to immunotherapy with immune checkpoint inhibitors (ICIs). It is critical to identify effective biomarkers that can enhance the efficacy of immunotherapy. The clinical data in the current study were collected from NSCLC patients treated with ICIs, and two groups were classified according to treatment effect: good group with consistent efficacy, poor group with only progressiveness. Differences in intestinal microbiota between the two groups were analyzed using 16s rRNA sequencing. Beta diversity analysis indicated differences between the two groups that were available for differentiation. Comparison of the number of common or unique operational taxonomic units (OTUs) among different groups suggested that there were 53 unique OTUs in the good group and 51 unique OTUs in the poor group. At the phylum level, there was a difference between the two groups for several bacterial groups with the highest abundance values, among which Firmicutes, Actinobacteria and Fusobacteria were more abundant in the good group. Members of the genera Bifidobacterium and Lactobacillus were abundant in the good group, while the abundance of Bacteroides was low. Biomarkers in the poor group included Bacteroides, Bacteroidetes, Bacteroidia, Bacteroidales, Bacteroidaceae and Veillonellaceae. The intestinal microbiota composition affected the immunotherapy process for NSCLC, which might offer more rational instructions for the clinical application of ICIs in NSCLC patients.

7.
Medicine (Baltimore) ; 103(16): e37820, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38640328

Aldehyde dehydrogenase 2 (ALDH2) plays a critical role in safeguarding cells against acetaldehyde toxicity and is closely linked to human metabolism. Nevertheless, the involvement of ALDH2 in cancer remains enigmatic. This investigation seeks to comprehensively assess ALDH2's significance in pan-cancer. We conducted an all-encompassing analysis of pan-cancer utilizing multiple databases, including TCGA, linkedomicshs, UALCAN, and Kaplan-Meier plotter. We employed diverse algorithms such as EPIC, MCPCOUNTER, TIDTIMER, xCell, MCP-counter, CIBERSORT, quanTIseq, and EPIC to examine the connection between ALDH2 expression and immune cell infiltration. Single-cell sequencing analysis furnished insights into ALDH2's functional status in pan-cancer. Immunohistochemical staining was performed to validate ALDH2 expression in cancer tissues. In a comprehensive assessment, we observed that tumor tissues demonstrated diminished ALDH2 expression levels compared to normal tissues across 16 different cancer types. ALDH2 expression exhibited a significant positive correlation with the infiltration of immune cells, including CD4 + T cells, CD8 + T cells, neutrophils, B cells, and macrophages, in various tumor types. Moreover, this study explored the association between ALDH2 and patient survival, examined the methylation patterns of ALDH2 in normal and primary tumor tissues, and delved into genetic variations and mutations of ALDH2 in tumors. The findings suggest that ALDH2 could serve as a valuable prognostic biomarker in pan-cancer, closely linked to the tumor's immune microenvironment.


Acetaldehyde , Aldehyde Dehydrogenase, Mitochondrial , Neoplasms , Humans , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase, Mitochondrial/immunology , Aldehyde Dehydrogenase, Mitochondrial/metabolism , Algorithms , Biomarkers , Neoplasms/genetics , Prognosis , Tumor Microenvironment/immunology
8.
Front Neurosci ; 18: 1370406, 2024.
Article En | MEDLINE | ID: mdl-38665289

Sepsis is a leading cause of death resulting from an uncontrolled inflammatory response to an infectious agent. Multiple organ injuries, including brain injuries, are common in sepsis. The underlying mechanism of sepsis-associated encephalopathy (SAE), which is associated with neuroinflammation, is not yet fully understood. Recent studies suggest that the release of interleukin-1ß (IL-1ß) following activation of microglial cells plays a crucial role in the development of long-lasting neuroinflammation after the initial sepsis episode. This review provides a comprehensive analysis of the recent literature on the molecular signaling pathways involved in microglial cell activation and interleukin-1ß release. It also explores the physiological and pathophysiological role of IL-1ß in cognitive function, with a particular focus on its contribution to long-lasting neuroinflammation after sepsis. The findings from this review may assist healthcare providers in developing novel interventions against SAE.

9.
Adv Mater ; : e2314152, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38652466

Self-sustained motions are widespread in biological systems by harvesting energy from surrounding environments, which inspire scientists to develop autonomous soft robots. However, most-existing soft robots require dynamic heterogeneous stimuli or complex fabrication with different components. Recently, control of topological geometry has been promising to afford soft robots with physical intelligence and thus life-like motions. Reported here are a series of closed twisted ribbon robots, which exhibit self-sustained flipping and rotation under constant light irradiation. Both Möbius strip and Seifert ribbon robots are devised for the first time by using an identical hydrogel, which responds to light irradiation on either side. Experiment and simulation results indicate that the self-regulated motions of the hydrogel robots are related to fast and reversible response of muscle-like gel, self-shadowing effect, and topology-facilitated refresh of light-exposed regions. The motion speeds and directions of the hydrogel robots can be tuned over a wide range. These closed twisted ribbon hydrogels are further applied to execute specific tasks in aqueous environments, such as collecting plastic balls, climbing a vertical rod, and transporting objects. This work presents new design principle for autonomous hydrogel robots by benefiting from material response and topology geometry, which may be inspirative for the robotics community.

10.
Sensors (Basel) ; 24(7)2024 Mar 22.
Article En | MEDLINE | ID: mdl-38610240

Currently, cutting-edge, high-frequency current sources are limited by switching devices and wire materials, and the output current cannot take into account the demands of a high peak and low rise time at the same time. Based on the output demand of a current source, a non-inductive coil for providing high-frequency, high current sources with low rise times is designed. The coil is appropriately designed according to the principle of the ampere-turn method, where several turns of wire are utilized to linearly synthesize the current to obtain high-frequency currents with amplitudes up to 30 kA. However, the inductance formed after winding the coil could possess a hindering effect on the high-frequency current. In the present investigation, based on the law of energy conservation and utilizing the principle of transformer coupling, the inductor's hindering effect on high-frequency currents is appropriately eliminated by consuming the stored energy of the inductor innovatively. Theoretical calculations and practical tests show that the inductance of a two-layer 28-turn coil is 42 times smaller than that of a two-layer, 28-turn perfect circular spiral PCB coil. The measured inductance is only 6.69 µH, the output current amplitude is calculated to be up to 33 kA with a rise time of 20 ns, and the output waveform corresponding to a 1 MHz square wave is not remarkably distorted. This effective design idea could be very helpful in solving the problem of high peak values and low rise times in high-frequency, high-current source output design.

11.
BMC Microbiol ; 24(1): 133, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38643067

BACKGROUND: This study aimed to investigate the differences in the microbiota composition of serum exosomes from patients with acute and chronic cholecystitis. METHOD: Exosomes were isolated from the serum of cholecystitis patients through centrifugation and identified and characterized using transmission electron microscopy and nano-flow cytometry. Microbiota analysis was performed using 16S rRNA sequencing. RESULTS: Compared to patients with chronic cholecystitis, those with acute cholecystitis exhibited lower richness and diversity. Beta diversity analysis revealed significant differences in the microbiota composition between patients with acute and chronic cholecystitis. The relative abundance of Proteobacteria was significantly higher in exosomes from patients with acute cholecystitis, whereas Actinobacteria, Bacteroidetes, and Firmicutes were significantly more abundant in exosomes from patients with chronic cholecystitis. Furthermore, functional predictions of microbial communities using Tax4Fun analysis revealed significant differences in metabolic pathways such as amino acid metabolism, carbohydrate metabolism, and membrane transport between the two patient groups. CONCLUSIONS: This study confirmed the differences in the microbiota composition within serum exosomes of patients with acute and chronic cholecystitis. Serum exosomes could serve as diagnostic indicators for distinguishing acute and chronic cholecystitis.


Cholecystitis, Acute , Cholecystitis , Exosomes , Gastrointestinal Microbiome , Microbiota , Humans , RNA, Ribosomal, 16S/genetics , Gastrointestinal Microbiome/genetics , Feces/microbiology , Microbiota/genetics
12.
Virus Res ; 344: 199369, 2024 Jun.
Article En | MEDLINE | ID: mdl-38608732

Tobacco (Nicotiana tabacum) is one of the major cash crops in China. Potato virus Y (PVY), a representative member of the genus Potyvirus, greatly reduces the quality and yield of tobacco leaves by inducing veinal necrosis. Mild strain-mediated cross-protection is an attractive method of controlling diseases caused by PVY. Currently, there is a lack of effective and stable attenuated PVY mutants. Potyviral helper component-protease (HC-Pro) is a likely target for the development of mild strains. Our previous studies showed that the residues lysine at positions 124 and 182 (K124 and K182) in HC-Pro were involved in PVY virulence, and the conserved KITC motif in HC-Pro was involved in aphid transmission. In this study, to improve the stability of PVY mild strains, K at position 50 (K50) in KITC motif, K124, and K182 were separately substituted with glutamic acid (E), leucine (L), and arginine (R), resulting in a triple-mutant PVY-HCELR. The mutant PVY-HCELR had attenuated virulence and did not induce leaf veinal necrosis symptoms in tobacco plants and could not be transmitted by Myzus persicae. Furthermore, PVY-HCELR mutant was genetically stable after six serial passages, and only caused mild mosaic symptoms in tobacco plants even at 90 days post inoculation. The tobacco plants cross-protected by PVY-HCELR mutant showed high resistance to the wild-type PVY. This study showed that PVY-HCELR mutant was a promising mild mutant for cross-protection to control PVY.


Cross Protection , Mutation , Nicotiana , Plant Diseases , Potyvirus , Viral Proteins , Potyvirus/genetics , Potyvirus/pathogenicity , Potyvirus/enzymology , Nicotiana/virology , Plant Diseases/virology , Viral Proteins/genetics , Viral Proteins/metabolism , Virulence , Animals , Aphids/virology , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Plant Leaves/virology , China
13.
World Neurosurg ; 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38642836

BACKGROUND: Keyhole surgery has been widely used to clip various intracranial aneurysms. Here, the feasibility of microsurgical clipping of multiple intracranial aneurysms via the keyhole approach was further investigated. METHODS: The clinical data of 80 patients with multiple intracranial aneurysms treated with keyhole surgery were retrospectively analyzed. The patients included 25 males and 55 females, with an average age of 57.5 years. There were 13 patients with unruptured aneurysms, 67 patients with ruptured aneurysms (small aneurysms accounted for 52.2% of ruptured aneurysms), and a total of 198 aneurysms. A 4 cm incision and a bone hole of approximately 2.5 cm were used, per craniotomy standards. Forty-eight cases were treated via the supraorbital keyhole approach, 45 cases via the pterional keyhole approach, and three cases via the interhemispheric keyhole approach. RESULTS: A bilateral and unilateral keyhole approach was applied in 18 and 62 cases, respectively. A total of 170 ipsilateral and 7 contralateral aneurysms were clipped. The complete clipping rate was 98.9%. During the follow-up period of 6-12 months after surgery, the Glasgow outcome scale score was 5 points in 74 cases, 4 points in five cases, and 3 points in one case. The prognosis was associated with the preoperative Hunt-Hess classification but not with the number of operative sides, the operation opportunity, or the number of clipped aneurysms. CONCLUSION: Early keyhole surgical clipping of multiple intracranial aneurysms is an effective treatment. Among ruptured aneurysms, small aneurysms are common and need attention and timely treatment.

14.
J Anim Sci ; 1022024 Jan 03.
Article En | MEDLINE | ID: mdl-38563227

The liver plays a critical role in metabolic activity and is the body's first immune barrier, and maintaining liver health is particularly important for poultry production. MicroRNAs (miRNAs) are involved in a wide range of biological activities due to their capacity as posttranscriptional regulatory elements. A growing body of research indicates that miR-21-5p plays a vital role as a modulator of liver metabolism in various species. However, the effect of miR-21-5p on the chicken liver is unclear. In the current study, we discovered that the fatty liver had high levels of miR-21-5p. Then the qPCR, Western blot, flow cytometry, enzyme-linked immunosorbent assay, dual-luciferase, and immunofluorescence assays were, respectively, used to determine the impact of miR-21-5p in the chicken liver, and it turned out that miR-21-5p enhanced lipogenesis, oxidative stress, and inflammatory responses, which ultimately induced hepatocyte apoptosis. Mechanically, we verified that miR-21-5p can directly target nuclear factor I B (NFIB) and kruppel-like factor 3 (KLF3). Furthermore, our experiments revealed that the suppression of NFIB promoted apoptosis and inflammation, and the KLF3 inhibitor accelerated lipogenesis and enhanced oxidative stress. Furthermore, the cotransfection results suggest that the PI3K/AKT pathway is also involved in the process of miRNA-21-5p-mediate liver metabolism regulation. In summary, our study demonstrated that miRNA-21-5p plays a role in hepatocyte lipogenesis, oxidative stress, inflammation, and apoptosis, via targeting NFIB and KLF3 to suppress the PI3K/AKT signal pathway in chicken.


miR-21-5p is a typical noncoding RNA that could inhibit messenger RNA expression by targeting the 3ʹ-untranslated region to participate in fatty liver-related disease formation and progression. We demonstrated that miRNA-21-5p plays a role in hepatocyte lipogenesis, oxidative stress, inflammation, and apoptosis, via targeting nuclear factor I B and kruppel-like factor 3 to suppress the PI3K/AKT signal pathway in chicken. This research established the regulatory network mechanisms of miR-21-5p in chicken hepatic lipogenesis and fatty liver syndrome.


MicroRNAs , Proto-Oncogene Proteins c-akt , Animals , Proto-Oncogene Proteins c-akt/metabolism , NFI Transcription Factors/metabolism , Chickens/genetics , Chickens/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Lipogenesis/genetics , Signal Transduction , MicroRNAs/genetics , MicroRNAs/metabolism , Liver/metabolism , Apoptosis , Inflammation/metabolism , Inflammation/veterinary , Cell Proliferation
15.
Nat Aging ; 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38627524

Recent investigations into heterochronic parabiosis have unveiled robust rejuvenating effects of young blood on aged tissues. However, the specific rejuvenating mechanisms remain incompletely elucidated. Here we demonstrate that small extracellular vesicles (sEVs) from the plasma of young mice counteract pre-existing aging at molecular, mitochondrial, cellular and physiological levels. Intravenous injection of young sEVs into aged mice extends their lifespan, mitigates senescent phenotypes and ameliorates age-associated functional declines in multiple tissues. Quantitative proteomic analyses identified substantial alterations in the proteomes of aged tissues after young sEV treatment, and these changes are closely associated with metabolic processes. Mechanistic investigations reveal that young sEVs stimulate PGC-1α expression in vitro and in vivo through their miRNA cargoes, thereby improving mitochondrial functions and mitigating mitochondrial deficits in aged tissues. Overall, this study demonstrates that young sEVs reverse degenerative changes and age-related dysfunction, at least in part, by stimulating PGC-1α expression and enhancing mitochondrial energy metabolism.

16.
Microbiome ; 12(1): 68, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38570877

BACKGROUND: The trophic strategy is one key principle to categorize microbial lifestyles, by broadly classifying microorganisms based on the combination of their preferred carbon sources, electron sources, and electron sinks. Recently, a novel trophic strategy, i.e., chemoorganoautotrophy-the utilization of organic carbon as energy source but inorganic carbon as sole carbon source-has been specifically proposed for anaerobic methane oxidizing archaea (ANME-1) and Bathyarchaeota subgroup 8 (Bathy-8). RESULTS: To further explore chemoorganoautotrophy, we employed stable isotope probing (SIP) of nucleic acids (rRNA or DNA) using unlabeled organic carbon and 13C-labeled dissolved inorganic carbon (DIC), i.e., inverse stable isotope labeling, in combination with metagenomics. We found that ANME-1 archaea actively incorporated 13C-DIC into RNA in the presence of methane and lepidocrocite when sulfate was absent, but assimilated organic carbon when cellulose was added to incubations without methane additions. Bathy-8 archaea assimilated 13C-DIC when lignin was amended; however, their DNA was derived from both inorganic and organic carbon sources rather than from inorganic carbon alone. Based on SIP results and supported by metagenomics, carbon transfer between catabolic and anabolic branches of metabolism is possible in these archaeal groups, indicating their anabolic versatility. CONCLUSION: We provide evidence for the incorporation of the mixed organic and inorganic carbon by ANME-1 and Bathy-8 archaea in the environment. Video Abstract.


Archaea , Methane , Archaea/genetics , Isotope Labeling , Oxidation-Reduction , Methane/metabolism , Carbon/metabolism , DNA , Anaerobiosis , Geologic Sediments , Phylogeny
17.
Chin J Integr Med ; 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38570473

OBJECTIVE: To investigate whether Naoxueshu Oral Liquid (NXS) could promote hematoma absorption in post-craniotomy hematoma (PCH) patients. METHODS: This is an open-label, multicenter, and randomized controlled trial conducted at 9 hospitals in China. Patients aged 18-80 years with post-craniotomy supratentorial hematoma volume ranging from 10 to 30 mL or post-craniotomy infratentorial hematoma volume less than 10 mL, or intraventricular hemorrhage following cranial surgery were enrolled. They were randomly assigned at a 1:1 ratio to the NXS (10 mL thrice daily for 15 days) or control groups using a randomization code table. Standard medical care was administered in both groups. The primary outcome was the percentage reduction in hematoma volume from day 1 to day 15. The secondary outcomes included the percentage reduction in hematoma volume from day 1 to day 7, the absolute reduction in hematoma volume from day 1 to day 7 and 15, and the change in neurological function from day 1 to day 7 and 15. The safety was closely monitored throughout the study. Moreover, subgroup analysis was performed based on age, gender, history of diabetes, and etiology of intracerebral hemorrhage (ICH). RESULTS: A total of 120 patients were enrolled and randomly assigned between March 30, 2018 and April 15, 2020. One patient was lost to follow-up in the control group. Finally, there were 119 patients (60 in the NXS group and 59 in the control group) included in the analysis. In the full analysis set (FAS) analysis, the NXS group had a greater percentage reduction in hematoma volume from day 1 to day 15 than the control group [median (Q1, Q3): 85% (71%, 97%) vs. 76% (53%, 93%), P<0.05]. The secondary outcomes showed no statistical significance between two groups, either in FAS or per-protocol set (P>0.05). Furthermore, no adverse events were reported during the study. In the FAS analysis, the NXS group exhibited a higher percentage reduction in hematoma volume on day 15 in the following subgroups: male patients, patients younger than 65 years, patients without diabetes, or those with initial cranial surgery due to ICH (all P<0.05). CONCLUSIONS: The administration of NXS demonstrated the potential to promote the percentage reduction in hematoma volume from day 1 to day 15. This intervention was found to be safe and feasible. The response to NXS may be influenced by patient characteristics. (Registration No. ChiCTR1800017981).

18.
Cell Biol Int ; 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38563483

Daurisoline (DS) is an isoquinoline alkaloid that exerts anticancer activities in various cancer cells. However, the underlying mechanisms through which DS affects the survival of breast cancer cells remain poorly understood. Therefore, the present study was undertaken to investigate the potential anticancer effect of DS on breast cancer cells and reveal the mechanism underlying the enhanced tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis by DS. Cell counting kit-8 (CCK-8) and 5-ethynyl-2-deoxyuridine (EdU) assay were used to evaluate the ability of cell proliferation. Flow cytometry was selected to examine the cell cycle distribution. TUNEL assay was used to detect the cell apoptosis. The protein expression was measured by Western blot analysis. DS was found to reduce the cell viability and suppress the proliferation of MCF-7 and MDA-MB-231 cells by causing G1 phase cell cycle arrest. DS could trigger apoptosis by promoting the cleavage of caspase-8 and PARP. The phosphorylation of ERK, JNK, and p38MAPK was upregulated clearly following DS treatment. Notably, SP600125 (JNK inhibitor) pretreatment significantly abrogated DS-induced PARP cleavage. DS inactivated Akt/mTOR and Wnt/ß-catenin signaling pathway and upregulated the expression of ER stress-related proteins. Additionally, DS amplified TRAIL-caused viability reduction and apoptosis in breast cancer cells. Mechanismly, DS upregulated the protein level of DR4 and DR5, and knockdown of DR5 attenuated the cotreatment-induced cleavage of PARP. Inhibition of JNK could block DS-induced upregulation of DR5. This study provides valuable insights into the mechanisms of DS inhibiting cell proliferation, triggering apoptosis, and enhancing TRAIL sensitivity of breast cancer cells.

19.
Ultrasound Med Biol ; 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38594125

OBJECTIVE: This study aimed to investigate the impact of microbubble degradation and flow velocity on Sub-Harmonic Aided Pressure Estimation (SHAPE), and to explore the correlation between subharmonic amplitude and pressure as a single factor. METHODS: We develop an open-loop vascular phantom platform system and utilize a commercial ultrasound machine and microbubbles for subharmonic imaging. Subharmonic amplitude was measured continuously at constant pressure and flow velocity to assess the impact of microbubble degradation. Flow velocity was varied within a range of 4-14 cm/s at constant pressure to investigate its relationship to subharmonic amplitude. Furthermore, pressure was varied within a range of 10-110 mm Hg at constant flow velocity to assess its isolated effect on subharmonic amplitude. RESULTS: Under constant pressure and flow velocity, subharmonic amplitude exhibited a continuous decrease at an average rate of 0.221 dB/min, signifying ongoing microbubble degradation during the experimental procedures. Subharmonic amplitude demonstrated a positive correlation with flow velocity, with a variation ratio of 0.423 dB/(cm/s). Under controlled conditions of microbubble degradation and flow velocity, a strong negative linear correlation was observed between pressure and subharmonic amplitude across different Mechanical Index (MI) settings (all R2 > 0.90). The sensitivity of SHAPE was determined to be 0.025 dB/mmHg at an MI of 0.04. CONCLUSION: The assessment of SHAPE sensitivity is affected by microbubble degradation and flow velocity. Excluding the aforementioned influencing factors, a strong linear negative correlation between pressure and subharmonic amplitude was still evident, albeit with a sensitivity coefficient lower than previously reported values.

...