Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 18215, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107365

RESUMEN

Polycystic ovary syndrome (PCOS), which is the most prevalent endocrine disorder among women in their reproductive years, is linked to a higher occurrence and severity of atherosclerosis (AS). Nevertheless, the precise manner in which PCOS impacts the cardiovascular well-being of women remains ambiguous. The Gene Expression Omnibus database provided four PCOS datasets and two AS datasets for this study. Through the examination of genes originating from differentially expressed (DEGs) and critical modules utilizing functional enrichment analyses, weighted gene co-expression network (WGCNA), and machine learning algorithm, the research attempted to discover potential diagnostic genes. Additionally, the study investigated immune infiltration and conducted gene set enrichment analysis (GSEA) to examine the potential mechanism of the simultaneous occurrence of PCOS and AS. Two verification datasets and cell experiments were performed to assess biomarkers' reliability. The PCOS group identified 53 genes and AS group identified 175 genes by intersecting DEGs and key modules of WGCNA. Then, 18 genes from two groups were analyzed by machine learning algorithm. Death Associated Protein Kinase 1 (DAPK1) was recognized as an essential gene. Immune infiltration and single-gene GSEA results suggest that DAPK1 is associated with T cell-mediated immune responses. The mRNA expression of DAPK1 was upregulated in ox-LDL stimulated RAW264.7 cells and in granulosa cells. Our research discovered the close association between AS and PCOS, and identified DAPK1 as a crucial diagnostic biomarker for AS in PCOS.


Asunto(s)
Aterosclerosis , Síndrome del Ovario Poliquístico , Síndrome del Ovario Poliquístico/genética , Femenino , Humanos , Aterosclerosis/genética , Ratones , Animales , Redes Reguladoras de Genes , Perfilación de la Expresión Génica , Células RAW 264.7 , Aprendizaje Automático , Células de la Granulosa/metabolismo , Biomarcadores
2.
Sci Adv ; 10(19): eadl3549, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38718121

RESUMEN

Metabolic reprogramming is critical in the onset of pressure overload-induced cardiac remodeling. Our study reveals that proline dehydrogenase (PRODH), the key enzyme in proline metabolism, reprograms cardiomyocyte metabolism to protect against cardiac remodeling. We induced cardiac remodeling using transverse aortic constriction (TAC) in both cardiac-specific PRODH knockout and overexpression mice. Our results indicate that PRODH expression is suppressed after TAC. Cardiac-specific PRODH knockout mice exhibited worsened cardiac dysfunction, while mice with PRODH overexpression demonstrated a protective effect. In addition, we simulated cardiomyocyte hypertrophy in vitro using neonatal rat ventricular myocytes treated with phenylephrine. Through RNA sequencing, metabolomics, and metabolic flux analysis, we elucidated that PRODH overexpression in cardiomyocytes redirects proline catabolism to replenish tricarboxylic acid cycle intermediates, enhance energy production, and restore glutathione redox balance. Our findings suggest PRODH as a modulator of cardiac bioenergetics and redox homeostasis during cardiac remodeling induced by pressure overload. This highlights the potential of PRODH as a therapeutic target for cardiac remodeling.


Asunto(s)
Ratones Noqueados , Miocitos Cardíacos , Prolina , Remodelación Ventricular , Animales , Prolina/metabolismo , Miocitos Cardíacos/metabolismo , Ratones , Ratas , Prolina Oxidasa/metabolismo , Prolina Oxidasa/genética , Metabolismo Energético , Miocardio/metabolismo , Miocardio/patología , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/etiología , Modelos Animales de Enfermedad , Oxidación-Reducción , Masculino , Reprogramación Metabólica
3.
Bioact Mater ; 37: 94-105, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38523705

RESUMEN

The vulnerable plaques in atherosclerosis can cause severe outcome with great danger of acute cardiovascular events. Thus, timely diagnosis and treatment of vulnerable plaques in early stage can effectively benefit the clinical management of atherosclerosis. In this work, a targeting theranostic strategy on early-stage vulnerable plaques in atherosclerosis is realized by a LAID nanoplatform with X-CT and fluorescent dual-mode imaging and lipid-inflammation integrated regulation abilities. The iodinated contrast agents (ICA), phenylboronic acid modified astaxanthin and oxidized-dextran (oxDEX) jointly construct the nanoparticles loaded with the lipid-specific probe LFP. LAID indicates an active targeting to plaques along with the dual-responsive disassembly in oxidative stress and acidic microenvironment of atherosclerosis. The X-CT signals of ICA execute the location of early-stage plaques, while the LFP combines with lipid cores and realizes the recognition of vulnerable plaques. Meanwhile, the treatment based on astaxanthin is performed for restraining the progression of plaques. Transcriptome sequencing suggests that LAID can inhibit the lipid uptake and block NF-κB pathway, which synergistically demonstrates a lipid-inflammation integrated regulation to suppression the plaques growing. The in vivo investigations suggest that LAID delivers a favorable theranostics to the early-stage vulnerable plaques, which provides an impressive prospect for reducing the adverse prognosis of atherosclerosis.

4.
Front Endocrinol (Lausanne) ; 14: 1300373, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38155953

RESUMEN

Aims: Stress hyperglycemia ratio (SHR), an emerging indicator of critical illness, exhibits a significant association with adverse cardiovascular outcomes. The primary aim of this research endeavor is to evaluate the association between fasting SHR and contrast-induced acute kidney injury (CI-AKI). Methods: This cross-sectional study comprised 3,137 patients who underwent coronary angiography (CAG) or percutaneous coronary intervention (PCI). The calculation of fasting SHR involved dividing the admission fasting blood glucose by the estimated mean glucose obtained from glycosylated hemoglobin. CI-AKI was assessed based on elevated serum creatinine (Scr) levels. To investigate the relationship between fasting SHR and the proportion of SCr elevation, piecewise linear regression analysis was conducted. Modified Poisson's regression analysis was implemented to evaluate the correlation between fasting SHR and CI-AKI. Subgroup analysis and sensitivity analysis were conducted to explore result stability. Results: Among the total population, 482 (15.4%) patients experienced CI-AKI. Piecewise linear regression analysis revealed significant associations between the proportion of SCr elevation and fasting SHR on both sides (≤ 0.8 and > 0.8) [ß = -12.651, 95% CI (-23.281 to -2.022), P = 0.020; ß = 8.274, 95% CI (4.176 to 12.372), P < 0.001]. The Modified Poisson's regression analysis demonstrated a statistically significant correlation between both the lowest and highest levels of fasting SHR and an increased incidence of CI-AKI [(SHR < 0.7 vs. 0.7 ≤ SHR < 0.9) ß = 1.828, 95% CI (1.345 to 2.486), P < 0.001; (SHR ≥ 1.3 vs. 0.7 ≤ SHR < 0.9) ß = 2.896, 95% CI (2.087 to 4.019), P < 0.001], which was further validated through subgroup and sensitivity analyses. Conclusion: In populations undergoing CAG or PCI, both lowest and highest levels of fasting SHR were significantly associated with an increased occurrence of CI-AKI.


Asunto(s)
Lesión Renal Aguda , Hiperglucemia , Intervención Coronaria Percutánea , Humanos , Angiografía Coronaria/efectos adversos , Estudios Transversales , Medios de Contraste/efectos adversos , Intervención Coronaria Percutánea/efectos adversos , Factores de Riesgo , Resultado del Tratamiento , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/epidemiología , Ayuno , Hiperglucemia/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA