Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
J Am Chem Soc ; 146(12): 8031-8042, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38478877

The effects of temperature and chemical environment on a pentanuclear cyanide-bridged, trigonal bipyramidal molecular paramagnet have been investigated. Using element- and oxidation state-specific near-ambient pressure X-ray photoemission spectroscopy (NAP-XPS) to probe charge transfer and second order, nonlinear vibrational spectroscopy, which is sensitive to symmetry changes based on charge (de)localization coupled with DFT, a detailed picture of environmental effects on charge-transfer-induced spin transitions is presented. The molecular cluster, Co3Fe2(tmphen)6(µ-CN)6(t-CN)6, abbrev. Co3Fe2, shows changes in electronic behavior depending on the chemical environment. NAP-XPS shows that temperature changes induce a metal-to-metal charge transfer (MMCT) in Co3Fe2 between a Co and Fe center, while cycling between ultrahigh vacuum and 2 mbar of water at constant temperature causes oxidation state changes not fully captured by the MMCT picture. Sum frequency generation vibrational spectroscopy (SFG-VS) probes the role of the cyanide ligand, which controls the electron (de)localization via the superexchange coupling. Spectral shifts and intensity changes indicate a change from a charge delocalized, Robin-Day class II/III high spin state to a charge-localized, class I low spin state consistent with DFT. In the presence of a H-bonding solvent, the complex adopts a localized electronic structure, while removal of the solvent delocalizes the charges and drives an MMCT. This change in Robin-Day classification of the complex as a function of chemical environment results in reversible switching of the dipole moment, analogous to molecular multiferroics. These results illustrate the important role of the chemical environment and solvation on underlying charge and spin transitions in this and related complexes.

2.
Chem Sci ; 14(17): 4523-4531, 2023 May 03.
Article En | MEDLINE | ID: mdl-37152268

The electrochemical conversion of CO2 represents a promising way to simultaneously reduce CO2 emissions and store chemical energy. However, the competition between CO2 reduction (CO2R) and the H2 evolution reaction (HER) hinders the efficient conversion of CO2 in aqueous solution. In water, CO2 is in dynamic equilibrium with H2CO3, HCO3 -, and CO3 2-. While CO2 and its associated carbonate species represent carbon sources for CO2R, recent studies by Koper and co-workers indicate that H2CO3 and HCO3 - also act as proton sources during HER (J. Am. Chem. Soc. 2020, 142, 4154-4161, ACS Catal. 2021, 11, 4936-4945, J. Catal. 2022, 405, 346-354), which can favorably compete with water at certain potentials. However, accurately distinguishing between competing reaction mechanisms as a function of potential requires direct observation of the non-equilibrium product distribution present at the electrode/electrolyte interface. In this study, we employ vibrational sum frequency generation (VSFG) spectroscopy to directly probe the interfacial species produced during competing HER/CO2R on Au electrodes. The vibrational spectra at the Ar-purged Na2SO4 solution/Au interface, where only HER occurs, show a strong peak around 3650 cm-1, which appears at the HER onset potential and is assigned to OH-. Notably, this species is absent for the CO2-purged Na2SO4 solution/gold interface; instead, a peak around 3400 cm-1 appears at catalytic potential, which is assigned to CO3 2- in the electrochemical double layer. These spectral reporters allow us to differentiate between HER mechanisms based on water reduction (OH- product) and HCO3 - reduction (CO3 2- product). Monitoring the relative intensities of these features as a function of potential in NaHCO3 electrolyte reveals that the proton donor switches from HCO3 - at low overpotential to H2O at higher overpotential. This work represents the first direct detection of OH- on a metal electrode produced during HER and provides important insights into the surface reactions that mediate selectivity between HER and CO2R in aqueous solution.

3.
J Phys Chem Lett ; 14(15): 3643-3650, 2023 Apr 20.
Article En | MEDLINE | ID: mdl-37027816

CuO is often employed as a photocathode for H2 evolution and CO2 reduction, but observed efficiency is still far below the theoretical limit. To bridge the gap requires understanding the CuO electronic structure; however, computational efforts lack consensus on the orbital character of the photoexcited electron. In this study, we measure the femtosecond XANES spectra of CuO at the Cu M2,3 and O L1 edges to track the element-specific dynamics of electrons and holes. Results show that photoexcitation represents an O 2p to Cu 4s charge transfer state indicating the conduction band electron has primarily Cu 4s character. We also observe ultrafast mixing of Cu 3d and 4s conduction band states mediated by coherent phonons, with Cu 3d character of the photoelectron reaching a maximum of 16%. This is the first observation of the photoexcited redox state in CuO, and results provide a benchmark for theory where electronic structure modeling still relies heavily on model-dependent parametrization.

4.
Chem Sci ; 13(25): 7634-7643, 2022 Jun 29.
Article En | MEDLINE | ID: mdl-35872825

Hydrated cations present in the electrochemical double layer (EDL) are known to play a crucial role in electrocatalytic CO2 reduction (CO2R), and numerous studies have attempted to explain how the cation effect contributes to the complex CO2R mechanism. CO2R is a structure sensitive reaction, indicating that a small fraction of total surface sites may account for the majority of catalytic turnover. Despite intense interest in specific cation effects, probing site-specific, cation-dependent solvation structures remains a significant challenge. In this work, CO adsorbed on Au is used as a vibrational Stark reporter to indirectly probe solvation structure using vibrational sum frequency generation (VSFG) spectroscopy. Two modes corresponding to atop adsorption of CO are observed with unique frequency shifts and potential-dependent intensity profiles, corresponding to direct adsorption of CO to inactive surface sites, and in situ generated CO produced at catalytic active sites. Analysis of the cation-dependent Stark tuning slopes for each of these species provides estimates of the hydrated cation radius upon adsorption to active and inactive sites on the Au electrode. While cations are found to retain their bulk hydration shell upon adsorption at inactive sites, catalytic active sites are characterized by a single layer of water between the Au surface and the electrolyte cation. We propose that the drastic increase in catalytic performance at active sites stems from this unique solvation structure at the Au/electrolyte interface. Building on this evidence of a site-specific EDL structure will be critical to understand the connection between cation-dependent interfacial solvation and CO2R performance.

5.
JACS Au ; 2(2): 472-482, 2022 Feb 28.
Article En | MEDLINE | ID: mdl-35252996

The selectivity and activity of the carbon dioxide reduction (CO2R) reaction are sensitive functions of the electrolyte cation. By measuring the vibrational Stark shift of in situ-generated CO on Au in the presence of alkali cations, we quantify the total electric field present at catalytic active sites and deconvolute this field into contributions from (1) the electrochemical Stern layer and (2) the Onsager (or solvation-induced) reaction field. Contrary to recent theoretical reports, the CO2R kinetics does not depend on the Stern field but instead is closely correlated with the strength of the Onsager reaction field. These results show that in the presence of adsorbed (bent) CO2, the Onsager field greatly exceeds the Stern field and is primarily responsible for CO2 activation. Additional measurements of the cation-dependent water spectra using vibrational sum frequency generation spectroscopy show that interfacial solvation strongly influences the CO2R activity. These combined results confirm that the cation-dependent interfacial water structure and its associated electric field must be explicitly considered for accurate understanding of CO2R reaction kinetics.

6.
J Am Chem Soc ; 144(7): 2829-2840, 2022 02 23.
Article En | MEDLINE | ID: mdl-35137579

To achieve high selectivity in enzyme catalysis, nature carefully controls both the catalyst active site and the pocket or environment that mediates access and the geometry of a reactant. Despite the many advantages of heterogeneous catalysis, active sites on a surface are rarely defined with atomic precision, making it difficult to control reaction selectivity with the molecular precision of homogeneous systems. In colloidal nanoparticle synthesis, structural control is accomplished using a surface ligand or capping layer that stabilizes a specific particle morphology and prevents nanoparticle aggregation. Usually, these surface ligands are considered detrimental for catalysis because they occupy otherwise active surface sites. However, a number of examples have shown that surface ligands can play a beneficial role in defining the catalytic environment and enhancing performance by a variety of mechanisms. This perspective summarizes recent advances and opportunities using surface ligands to enhance the performance of nanocatalysts for electrochemical CO2 reduction. Several mechanisms are discussed, including selective permeability, modulating interfacial solvation structure and electric fields, chemical activation, and templating active site selection. These examples inform strategies and point to emerging opportunities to design nanocatalysts toward molecular level control of electrochemical CO2 conversion.

7.
Chem Sci ; 11(45): 12298-12306, 2020 Dec 07.
Article En | MEDLINE | ID: mdl-34976334

Nanoparticle catalysts display optimal mass activity due to their high surface to volume ratio and tunable size and structure. However, control of nanoparticle size requires the presence of surface ligands, which significantly influence catalytic performance. In this work, we investigate the effect of dodecanethiol on the activity, selectivity, and stability of Au nanoparticles for electrochemical carbon dioxide reduction (CO2R). Results show that dodecanethiol on Au nanoparticles significantly enhances selectivity and stability with minimal loss in activity by acting as a CO2-permeable membrane, which blocks the deposition of metal ions that are otherwise responsible for rapid deactivation. Although dodecanethiol occupies 90% or more of the electrochemical active surface area, it has a negligible effect on the partial current density to CO, indicating that it specifically does not block the active sites responsible for CO2R. Further, by preventing trace ion deposition, dodecanethiol stabilizes CO production on Au nanoparticles under conditions where CO2R selectivity on polycrystalline Au rapidly decays to zero. Comparison with other surface ligands and nanoparticles shows that this effect is specific to both the chemical identity and the surface structure of the dodecanethiol monolayer. To demonstrate the potential of this catalyst, CO2R was performed in electrolyte prepared from ambient river water, and dodecanethiol-capped Au nanoparticles produce more than 100 times higher CO yield compared to clean polycrystalline Au at identical potential and similar current.

8.
Environ Sci Technol ; 52(18): 10680-10688, 2018 09 18.
Article En | MEDLINE | ID: mdl-30106284

For the first time, we demonstrated vanadate (V(V)) reduction in a membrane biofilm reactor (MBfR) using CH4 as the sole electron donor. The V(V)-reducing capability of the biofilm kept increasing, with complete removal of V(V) achieved when the influent surface loading of V(V) was 363 mg m-2 day-1. Almost all V(V) was reduced to V(IV) precipitates, which is confirmed by a scanning electron microscope coupled to energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS). Microbial community analysis revealed that denitrifiers Methylomonas and Denitratisoma might be the main genera responsible for V(V) reduction. The constant enrichment of Methylophilus suggests that the intermediate (i.e., methanol) from CH4 metabolism might be used as the electron carriers for V(V) bioreduction. Intrusion of V(V) (2-5 mg/L, at the surface loading of 150-378 mg m-2 day-1) into the biofilm stimulated the secretion of extracellular polymeric substances (EPS), but high loading of V(V) (10 mg/L, at the surface loading of 668 mg m-2 day-1) decreased the amount of EPS. Metagenomic prediction analysis established the strong correlation between the secretion of EPS and the microbial metabolism associated with V(V) reduction, tricarboxylic acid cycle (TCA) cycle, methane oxidation, and ATP production, and EPS might relieve the oxidative stress induced by high loading of V(V). Colorimetric determination and a three-dimensional excitation-emission matrix (3D-EEM) showed that tryptophan and humic acid-like substances might play important roles in microbial cell protection and V(V) binding. Fourier transform infrared (FTIR) spectroscopy identified hydroxyl (-OH) and carboxyl (COO-) groups in EPS as the candidate functional groups for binding V(V).


Methane , Vanadates , Biofilms , Bioreactors , Extracellular Polymeric Substance Matrix
9.
Environ Sci Pollut Res Int ; 25(7): 6609-6618, 2018 Mar.
Article En | MEDLINE | ID: mdl-29255986

We studied the effect of electron competition on chromate (Cr(VI)) reduction in a methane (CH4)-based membrane biofilm reactor (MBfR), since the reduction rate was usually limited by electron supply. A low surface loading of SO42- promoted Cr(VI) reduction. The Cr(VI) removal percentage increased from 60 to 70% when the SO42- loading increased from 0 to 4.7 mg SO42-/m2-d. After the SO42- loading decreased back to zero, the Cr(VI) removal further increased to 90%, suggesting that some sulfate-reducing bacteria (SRB) stayed in the reactor to reduce Cr(VI). However, a high surface loading of SO42- (26.6 mg SO42-/m2-d) significantly slowed down the Cr(VI) reduction to 40% removal, which was probably due to competition between Cr(VI) and SO42- reduction. Similarly, when 0.5 mg/L of Se(VI) was introduced into the MBfR, Cr(VI) removal percentage slightly decreased to 60% and then increased to 80% when input Se(VI) was removed again. The microbial community strongly depended on the loadings of Cr(VI) and SO42-. In the sulfate effect experiment, three genera were dominant. Based on the correlation between the abundances of the three genera and the loadings of Cr(VI) and SO42-, we conclude that Methylocystis, a type II methanotroph, reduced both Cr(VI) and sulfate, Meiothermus only reduced Cr(VI), and Ferruginibacter only reduced SO42-.


Chromates/chemistry , Electrons , Methane/chemistry , Bacterial Physiological Phenomena , Biofilms , Bioreactors/microbiology , Oxidation-Reduction
...