Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 648: 123583, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37940081

RESUMEN

Irinotecan (IRT), a classic clinical chemotherapeutic agent for treating colorectal cancer, has been found to induce immunogenic cell death (ICD) while exerting cytotoxicity in tumor cells. This effect is likely to be amplified in combination with immune modulators. Unfortunately, free drugs without targeting capacity would receive poor outcomes and strong side effects. To address these issues, in this work, an acid-sensitive micelle based on an amphiphilic poly(ß-amino ester) derivative was constructed to co-deliver IRT and the immune adjuvant imiquimod (IMQ), termed PII. PII kept stable under normal physiological conditions. After internalization by tumor cells, PII dissociated in acidic lysosomes and released IRT and IMQ rapidly. In the CT26 tumor mouse model, PII increased the intra-tumoral SN38 (the active metabolite of IRT) and IMQ concentrations by up to 9.39 and 3.44 times compared with the free drug solution. The tumor inhibition rate of PII achieved 87.29%. This might profit from that IRT induced ICD, which promoted dendritic cells (DCs) maturation and intra-tumoral infiltration of CD8+ T cells. In addition, IMQ enhanced the antigen presenting ability of DCs and stimulated tumor associated macrophages to secrete tumor-killing cytokines. PII provided an effective strategy to combat colorectal cancer by synergy of chemotherapy and immunoregulation.


Asunto(s)
Neoplasias Colorrectales , Micelas , Animales , Ratones , Imiquimod , Irinotecán , Linfocitos T CD8-positivos , Neoplasias Colorrectales/tratamiento farmacológico , Concentración de Iones de Hidrógeno , Línea Celular Tumoral
2.
ACS Nano ; 17(18): 17826-17844, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37690028

RESUMEN

Inside the tumor microenvironment, a complicated immunosuppressive network is constituted by tumor cells and suppressive immune cells as its nodes, including myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), and regulatory T cells, which have mutual promotion on each other and superimposed inhibition on natural killer (NK) cells and cytotoxic T cells. Breaking the whole balance of this web is critical to tumor immunotherapy since modulation on a single node may be diluted by other factors in the network. To achieve multifaceted regulation on antitumor immunity against triple-negative breast cancer, in this work, a micelle, termed BEM, co-delivering the MDSC inhibitor, entinostat (ENT), and the immune checkpoint inhibitor, BMS-1, was constructed with pH-sensitive amphiphilic poly(ß-amino ester) derivatives. Then, BEM and the scavenger receptor A (SR-A) ligand dextran sulfate (DXS) formed a negatively charged nanoparticle (BEN). DXS detached from BEN in the weakly acidic tumor microenvironment and blocked SR-A on TAMs, reprogramming TAMs toward the M1 type. The positively charged BEM with facilitated intratumoral penetration and cellular uptake dissociated in the lysosomes, accompanied by the release of ENT and BMS-1 to suppress MDSCs and block the programmed cell death protein (PD)-1/PD-ligand 1 pathway, respectively. As a result, NK cells and CD8+ T cells in tumors were increased, as were their effector cytokines. The activated innate and adaptive antitumor immune responses suppressed the growth and metastasis of tumors and prolonged survival of 4T1 tumor-bearing mice. BEN provides a reliable approach for improving cancer immunotherapy by destroying the immunosuppression web in tumors via multinode regulation.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Animales , Ratones , Ligandos , Sistemas de Liberación de Medicamentos , Inmunosupresores , Microambiente Tumoral
3.
Nat Commun ; 14(1): 4746, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550297

RESUMEN

Colorectal cancer (CRC) therapy efficiency can be influenced by the microbiota in the gastrointestinal tract. Compared with traditional intervention, prebiotics delivery into the gut is a more controllable method for gut microbiota modulatory therapy. Capecitabine (Cap), the first-line chemotherapeutic agent for CRC, lacks a carrier that can prolong its half-life. Here, we construct a Cap-loaded nanoparticle using the prebiotic xylan-stearic acid conjugate (SCXN). The oral administration of SCXN delays the drug clearance in the blood and increases the intra-tumoral Cap concentration in the CRC mouse model. SCXN also facilitates the probiotic proliferation and short chain fatty acid production. Compared with free Cap, SCXN enhances the anti-tumor immunity and increases the tumor inhibition rate from 5.29 to 71.78%. SCXN exhibits good biocompatibility and prolongs the median survival time of CRC mice from 14 to 33.5 d. This prebiotics-based nanoparticle provides a promising CRC treatment by combining gut microbiota modulation and chemotherapy.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Nanopartículas , Ratones , Animales , Prebióticos , Capecitabina/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico
4.
Insects ; 14(5)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37233061

RESUMEN

The short stay at the beginning of the invasion process is a critical time for invasive species identification and preventing invasive species from developing a wider distribution and significant economic impact. The stalk-eyed seed bug Chauliops fallax is an important agricultural pest of soybean and was first reported to occur outside East Asia. Here, we reported the native evolutionary history, recent invasion history, and potential invasion threats of C. fallax for the first time based on population genetic methods and ecological niche modelling. The results showed that four native East Asian genetic groups (EA, WE, TL, and XZ) were well supported, showing an east-west differentiation pattern consistent with the geographical characteristics of three-step landforms in China. Two main haplotypes existed: Hap1 might have experienced a rapid northwards expansion process after the LGM period, and Hap5 reflected local adaptation to the environment in southeastern China. The Kashmir sample was found to come from the recent invasion of populations in the coastal areas of southern China. Ecological niche modelling results suggested that North America has a high risk of invasion, which might pose a serious threat to local soybean production. In addition, with future global warming, the suitable habitat in Asia will move towards the higher latitude region and gradually deviate from the soybean planting area, which indicates the threat of C. fallax to soybean production in Asia will decrease in the future. The results could provide new insights into the monitoring and management of this agricultural pest in the early invasion stage.

5.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37047136

RESUMEN

Studies indicate that genetic factors only account for approximately thirty percent of all autoimmune diseases, while the rest of autoimmune pathogenesis is attributed to environmental factors including toxic chemicals. To understand if and how environmental pollutants trigger autoimmunity, we investigated the effect of benzo[a]pyrene (BaP) exposure on the development of autoimmune phenotypes in the lupus-prone MRL strain. The exposure of MRL mice to BaP over the course of 8 weeks before lupus onset resulted in total body weight loss in males, while marginal changes in anti-dsDNA levels occurred. Multi-organ analyses of BaP-treated and control MRL mice suggested that the kidney is a major organ directly affected by the metabolism of benzene-containing compounds, with increased expression of BaP-target genes including Cyp4b1 and Hao2. Intriguingly, spatial transcriptomic data showed that BaP caused a drastic reduction in cell-type diversity in both the kidneys and spleen of MRL mice. Further analysis of the molecular pathways affected suggested a sex-biased effect of BaP treatment, with the upregulated expression of angiogenesis genes in the lungs and an increased deposition of C3 in the kidneys of male mice. While SLE is more common in women, the disease is more severe in male patients, with an increased risk of disease progression to renal failure and lung cancer. Our results reveal sex-biased molecular pathways stimulated by BaP which may help explain the increased likelihood of end organ damage in males with lupus.


Asunto(s)
Benzo(a)pireno , Insuficiencia Renal , Ratones , Masculino , Femenino , Animales , Benzo(a)pireno/toxicidad , Riñón , Perfilación de la Expresión Génica , Bazo
6.
Front Pediatr ; 11: 1051624, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36793337

RESUMEN

The majority of autoimmune diseases affect more women than men, suggesting an important role for sex hormones in regulating immune response. Current research supports this idea, highlighting the importance of sex hormones in both immune and metabolic regulation. Puberty is characterized by drastic changes in sex hormone levels and metabolism. These pubertal changes may be what forms the gulf between men and women in sex bias towards autoimmunity. In this review, a current perspective on pubertal immunometabolic changes and their impact on the pathogenesis of a select group of autoimmune diseases is presented. SLE, RA, JIA, SS, and ATD were focused on in this review for their notable sex bias and prevalence. Due to both the scarcity of pubertal autoimmune data and the differences in mechanism or age-of-onset in juvenile analogues often beginning prior to pubertal changes, data on the connection between the specific adult autoimmune diseases and puberty often relies on sex hormone influence in pathogenesis and established sex differences in immunity that begin during puberty.

7.
Insects ; 13(7)2022 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35886819

RESUMEN

Blissidae (the Chinch bug) is a group with high species richness in Lygaeoidea, but there are only a few descriptions of mitochondrial genomes available. We obtained mitogenomes from 10 species of eight genera from Blissidae through second-generation sequencing technology. The length of the mitochondrial genome (excluding the control region) is between 14643 and 14385 bp; the content of AT is between 74.1% and 77.9%. The sequence of the evolution rate of protein coding genes was as follows: ND5 > ATP8 > ND6 > ND2 > ND4 > ND4L > ND1 > ATP6 > ND3 > COIII > COII > CYTB > COI. The mitogenomic structure of Blissidae is highly conservative. Gene rearrangement is only found in Pirkimeru japonicus (PiGXBS1), which is formed as the duplication of tRNA-H. The intergenic spacer between ND4 and tRNA-H, which form an obvious stem-and-loop structure, was found in all samples in this study. The phylogenetic trees generated by BI and ML indicated that Blissidae can be divided into three major clades: Clade A (only included Macropes); Clade B ((Pirkimerus + Bochrus) + Iphicrates); and Clade C ((Ischnodemus + Capodemus) + (Cavelerius + Dimorphopterus)). The divergence within the Blissidae began at about 56 Ma. At the genus level, the divergence was concentrated at 30−51 Ma, slightly later than the diversification of Poaceae. The consistency of divergence time between Blissidae and Poaceae might hint at the coevolutionary relationship between them, but further molecular and biological evidence is still needed to prove it.

8.
Adv Sci (Weinh) ; 8(10): 2003542, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34026439

RESUMEN

Gut microbiota have close interactions with the host. It can affect cancer progression and the outcomes of cancer therapy, including chemotherapy, immunotherapy, and radiotherapy. Therefore, approaches toward the modulation of gut microbiota will enhance cancer prevention and treatment. Modern drug delivery systems (DDS) are emerging as rational and promising tools for microbiota intervention. These delivery systems have compensated for the obstacles associated with traditional treatments. In this review, the essential roles of gut microbiota in carcinogenesis, cancer progression, and various cancer therapies are first introduced. Next, advances in DDS that are aimed at enhancing the efficacy of cancer therapy by modulating or engineering gut microbiota are highlighted. Finally, the challenges and opportunities associated with the application of DDS targeting gut microbiota for cancer prevention and treatment are briefly discussed.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Quimioterapia/métodos , Microbioma Gastrointestinal , Inmunoterapia/métodos , Neoplasias/terapia , Radioterapia/métodos , Animales , Humanos , Neoplasias/metabolismo , Neoplasias/microbiología , Neoplasias/patología
9.
Med Rev (Berl) ; 1(2): 244-274, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37724299

RESUMEN

Despite continual progress in the technologies and regimens for cancer therapy, the treatment outcome of fatal metastatic breast cancer is far from satisfactory. Encouragingly, nanotechnology has emerged as a valuable tool to optimize drug delivery process in cancer therapy via preventing the cargos from degradation, improving the tumor-targeting efficiency, enhancing therapeutic agents' retention in specific sites, and controlling drug release. In the last decade, several mechanisms of suppressing tumor metastasis by functional nano drug delivery systems (NDDSs) have been revealed and a guidance for the rational design of anti-metastasis NDDSs is summarized, which consist of three aspects: optimization of physiochemical properties, tumor microenvironment remodeling, and biomimetic strategies. A series of medicinal functional biomaterials and anti-metastatic breast cancer NDDSs constructed by our team are introduced in this review. It is hoped that better anti-metastasis strategies can be inspired and applied in clinic.

10.
Curr Microbiol ; 77(10): 2745-2750, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32506240

RESUMEN

Panax notoginseng has long been used as a Chinese herb with high medicinal value. The endophytic bacteria in this medicinal plant have multiple biological functions. High-throughput sequencing is a rapidly evolving technique that helps profile the endophytic bacterial community structure of medicinal plants. However, few studies on the endophytic bacteria in P. notoginseng, particularly in dry P. notoginseng roots as a raw medicinal material, have been conducted. In this study, fresh P. notoginseng and dry P. notoginseng were analysed using high-throughput sequencing on an Illumina MiSeq platform to explore the diversity and functions of the endophytic bacteria in different parts of P. notoginseng. The results showed that a total of 201 operational taxonomic units were obtained from fresh P. notoginseng and dry P. notoginseng. The dominant phyla in the fresh and dry P. notoginseng were Proteobacteria (85.9%) and Firmicutes (99.9%), respectively, whereas the dominant genera in these samples were Enterobacter (84.4%) and Bacillus (99.6%), respectively. Fresh P. notoginseng exhibited a higher degree of endophytic bacterial diversity than dry P. notoginseng, but functional prediction of metabolism indicated that the relative abundance of the metabolic function of terpenoids and polyketides synthesis in the dry sample was higher than that in the fresh sample. Our study indicates significant differences in the diversity and metabolic function of the endophytic bacteria between fresh and dry P. notoginseng, providing useful information for the exploitation and utilization of endophytic bacteria resources from P. notoginseng.


Asunto(s)
Panax notoginseng , Bacterias/genética , Biodiversidad , Endófitos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Raíces de Plantas
11.
J Org Chem ; 84(3): 1534-1541, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30608689

RESUMEN

Six new 3,5-demethylorsellinic acid-based meroterpenoids, emeridones A-F (1-6), and eight known analogues (7-14) were isolated from Emericella sp. TJ29. Their structures and absolute configurations were elucidated by comprehensive spectroscopic analyses, single-crystal X-ray diffraction experiments, and electronic circular dichroism calculations. Emeridone A (1) represents the first meroterpenoid featuring a unique rigid 6/6/5/6 tetracyclic carbon ring system with two additional lactone rings. Emeridones B and C (2 and 3) possess a 2,6-dioxabicyclo[2.2.1]heptane and a spiro[bicyclo[3.2.2]nonane-2,1'-cyclohexane] moiety, respectively, and both functionalities were found for the second time in meroterpenoids. These new compounds were evaluated for their cytotoxic activities against five human cancer cells, and compounds 2, 4, and 6 exhibited moderate cytotoxic activities, with IC50 values ranging from 8.19 to 18.80 µM.


Asunto(s)
Dicroismo Circular/métodos , Emericella/química , Fenómenos Bioquímicos , Cristalografía por Rayos X , Humanos , Concentración 50 Inhibidora
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA