Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202405860, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38837604

RESUMEN

Numerous clinical disorders have been linked to the etiology of dysregulated NLRP3 (NACHT, LRR, and PYD domain-containing protein 3) inflammasome activation. Despite its potential as a pharmacological target, modulation of NLRP3 activity remains challenging. Only a sparse number of compounds have been reported that can modulate NLRP3 and none of them have been developed into a commercially available drug. In this research, we identified three potent NLRP3 inflammasome inhibitors, gymnoasins A-C (1-3), with unprecedented pentacyclic scaffolds, from an Antarctic fungus Pseudogymnoascus sp. HDN17-895, which represent the first naturally occurring naphthopyrone-macrolide hybrids. Additionally, biomimetic synthesis of gymnoasin A (1) was also achieved validating the chemical structure and affording ample amounts of material for exhaustive bioactivity assessments. Biological assays indicated that 1 could significantly inhibited in vitro NLRP3 inflammasome activation and in vivo pro-inflammatory cytokine IL-1ß release, representing a valuable new lead compound for the development of novel therapeutics with the potential to inhibit the NLRP3 inflammasome.

2.
J Am Chem Soc ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888159

RESUMEN

Crosstalk-oriented chemical evolution of natural products (NPs) is an efficacious strategy for generating novel skeletons through coupling reactions between NP fragments. In this study, two NOD-like receptor protein 3 (NLRP3) inflammasome inhibitors, sorbremnoids A and B (1 and 2), with unprecedented chemical architectures were identified from a fungus Penicillium citrinum. Compounds 1 and 2 exemplify rare instances of hybrid NPs formed via a major facilitator superfamily (MFS)-like enzyme by coupling reactive intermediates from two separate biosynthetic gene clusters (BGCs), pcisor and pci56. Both sorbremnoids A and B are NLRP3 inflammasome inhibitors. Sorbremnoid A demonstrated strong inhibition of IL-1ß by directly binding to the NLRP3 protein, inhibiting the assembly and activation of the NLRP3 inflammasome in vitro, with potential application in diabetic refractory wound healing through the suppression of excessive inflammatory responses. This research will inspire the development of anti-NLRP3 inflammasome agents as lead treatments and enhance knowledge pertaining to NPs derived from biosynthetic crosstalk.

3.
Org Lett ; 26(16): 3349-3354, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38607994

RESUMEN

UbiA-type prenyltransferases (PTases) are significant enzymes that lead to structurally diverse meroterpenoids. Herein, we report the identification and characterization of an undescribed UbiA-type PTase, FtaB, that is responsible for the farnesylation of indole-containing diketopiperazines (DKPs) through genome mining. Heterologous expression of the fta gene cluster and non-native pathways result in the production of a series of new C2-farnesylated DKPs. This study broadens the reaction scope of UbiA-type PTases and expands the chemical diversity of meroterpenoids.


Asunto(s)
Dicetopiperazinas , Dimetilaliltranstransferasa , Prenilación , Dimetilaliltranstransferasa/metabolismo , Dimetilaliltranstransferasa/química , Dimetilaliltranstransferasa/genética , Dicetopiperazinas/química , Dicetopiperazinas/metabolismo , Estructura Molecular , Familia de Multigenes
4.
Adv Sci (Weinh) ; : e2310018, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687842

RESUMEN

Dimeric indole-containing diketopiperazines (di-DKPs) are a diverse group of natural products produced through cytochrome P450-catalyzed C-C or C-N coupling reactions. The regio- and stereoselectivity of these reactions plays a significant role in the structural diversity of di-DKPs. Despite their pivotal role, the mechanisms governing the selectivity in fungi are not fully understood. Employing bioinformatics analysis and heterologous expression experiments, five undescribed P450 enzymes (AmiP450, AcrP450, AtP450, AcP450, and AtuP450) responsible for the regio- and stereoselective dimerization of diketopiperazines (DKPs) in fungi are identified. The function of these P450s is consistent with phylogenetic analysis, highlighting their dominant role in controlling the dimerization modes. Combinatorial biosynthesis-based pathway reconstitution of non-native gene clusters expands the chemical space of fungal di-DKPs and reveals that the regioselectivity is influenced by the substrate. Furthermore, multiple sequence alignment and molecular docking of these enzymes demonstrate a C-terminal variable region near the substrate tunnel entrance in AtuP450 that is crucial for its regioselectivity. These findings not only reveal the secret of fungal di-DKPs diversity but also deepen understanding of the mechanisms and catalytic specificity involved in P450-catalyzed dimerization reactions.

5.
J Nat Prod ; 87(5): 1407-1415, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38662578

RESUMEN

Alkaloids with a phenylhydrazone architecture are rarely found in nature. Four unusual phenylhydrazone alkaloids named talarohydrazones A-D (1-4) were isolated from the deep-sea cold seep derived fungus Talaromyces amestolkiae HDN21-0307 using the one strain-many compounds (OSMAC) approach and MS/MS-based molecular networking (MN) combined with network annotation propagation (NAP) and the unsupervised substructure annotation method MS2LDA. Their structures were elucidated by spectroscopic data analysis, single-crystal X-ray diffraction, and quantum chemical calculations. Talarohydrazone A (1) possessed an unusual skeleton combining 2,4-pyridinedione and phenylhydrazone. Talarohydrazone B (2) represents the first natural phenylhydrazone-bearing azadophilone. Bioactivity evaluation revealed that compound 1 exhibited cytotoxic activity against NCI-H446 cells with an IC50 value of 4.1 µM. In addition, compound 1 displayed weak antibacterial activity toward Staphylococcus aureus with an MIC value of 32 µg/mL.


Asunto(s)
Alcaloides , Hidrazonas , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus , Talaromyces , Talaromyces/química , Hidrazonas/farmacología , Hidrazonas/química , Alcaloides/farmacología , Alcaloides/química , Alcaloides/aislamiento & purificación , Estructura Molecular , Staphylococcus aureus/efectos de los fármacos , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Ensayos de Selección de Medicamentos Antitumorales , Cristalografía por Rayos X
6.
J Nat Prod ; 87(4): 1222-1229, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38447096

RESUMEN

Utilizing a gene evolution-oriented approach for gene cluster mining, a cryptic cytochalasin-like gene cluster (sla) in Antarctic-derived Simplicillium lamelliciola HDN13430 was identified. Compared with the canonical cytochalasin biosynthetic gene clusters (BGCs), the sla gene cluster lacks the key α,ß-hydrolase gene. Heterologous expression of the sla gene cluster led to the discovery of a new compound, slamysin (1), characterized by an N-acylated amino acid structure and demonstrating weak anti-Bacillus cereus activity. These findings underscore the potential of genetic evolution in uncovering novel compounds and indicating specific adaptive evolution within specialized habitats.


Asunto(s)
Citocalasinas , Familia de Multigenes , Citocalasinas/química , Citocalasinas/farmacología , Estructura Molecular , Policétidos/química , Policétidos/farmacología , Regiones Antárticas , Bacillus cereus , Evolución Molecular
8.
Nat Prod Res ; : 1-8, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526199

RESUMEN

One new indole diterpenoid, ascandinine T (1), and three known analogues (2-4) were isolated from an Antarctic sponge-derived fungus Aspergillus candidus HDN15-152. The structures, including absolute configurations, were established based on NMR, HRESIMS, and electronic circular dichroism (ECD) calculations. All isolated compounds were tested for antiviral and anticancer activity. Compound 4 displayed antiviral activity against influenza A virus (IAV) of A/PR/8/34(H1N1) strain with an IC50 value of 39.2 µM, while compound 2 showed cytotoxicity against NCI-H446, NCI-H446/EP and L-02 cells with IC50 values ranging from 9.77 to 13.91 µM.

9.
Bioresour Technol ; 399: 130536, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38452951

RESUMEN

Anaerobic digestion holds promise as a method for removing antibiotic resistance genes (ARGs) from dairy waste. However, accurately predicting the efficiency of ARG removal remains a challenge. This study introduces a novel appproach utilizing machine learning to forecast changes in ARG abundances following thermal hydrolysis-anaerobic digestion (TH-AD) treatment. Through network analysis and redundancy analyses, key determinants of affect ARG fluctuations were identified, facilitating the development of machine learning models capable of accurately predicting ARG changes during TH-AD processes. The decision tree model demonstrated impressive predictive power, achieving an impessive R2 value of 87% against validation data. Feature analysis revealed that the genes intI2 and intI1 had a critical impact on the absolute abundance of ARGs. The predictive model developed in this study offers valuable insights for improving operational and managerial practices in dairy waste treatment facilities, with the ultimate goal of mitigating the spread of antibiotic resistance.


Asunto(s)
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacología , Anaerobiosis , Hidrólisis , Farmacorresistencia Microbiana/genética , Aguas del Alcantarillado
10.
Metab Eng ; 82: 147-156, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38382797

RESUMEN

Cyclo-diphenylalanine (cFF) is a symmetrical aromatic diketopiperazine (DKP) found wide-spread in microbes, plants, and resulting food products. As different bioactivities continue being discovered and relevant food and pharmaceutical applications gradually emerge for cFF, there is a growing need for establishing convenient and efficient methods to access this type of compound. Here, we present a robust cFF production system which entailed stepwise engineering of the filamentous fungal strain Aspergillus nidulans A1145 as a heterologous expression host. We first established a preliminary cFF producing strain by introducing the heterologous nonribosomal peptide synthetase (NRPS) gene penP1 to A. nidulans A1145. Key metabolic pathways involving shikimate and aromatic amino acid biosynthetic support were then engineered through a combination of gene deletions of competitive pathway steps, over-expressing feedback-insensitive enzymes in phenylalanine biosynthesis, and introducing a phosphoketolase-based pathway, which diverted glycolytic flux toward the formation of erythrose 4-phosphate (E4P). Through the stepwise engineering of A. nidulans A1145 outlined above, involving both heterologous pathway addition and native pathway metabolic engineering, we were able to produce cFF with titers reaching 611 mg/L in shake flask culture and 2.5 g/L in bench-scale fed-batch bioreactor culture. Our study establishes a production platform for cFF biosynthesis and successfully demonstrates engineering of phenylalanine derived diketopiperazines in a filamentous fungal host.


Asunto(s)
Aspergillus nidulans , Dipéptidos , Ingeniería Metabólica , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Reactores Biológicos , Fenilalanina/genética , Fenilalanina/metabolismo
11.
Environ Geochem Health ; 46(1): 26, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225519

RESUMEN

Irrigation with treated livestock wastewater (TWW) is a promising strategy for reusing resources. However, TWW irrigation might introduce antibiotic resistant genes (ARGs) into the soil, posing environmental risks associated with antibiotic resistance. This study focuses on investigating the influence of irrigation amounts and duration on the fate of ARGs and identifies key factors driving their changes. The results showed that there were 13 ARGs in TWW, while only 5 ARGs were detected in irrigated soil. That is some introduced ARGs from TWW could not persistently exist in the soil. After 1-year irrigation, an increase in irrigation amount from 0.016 t/m2 to 0.048 t/m2 significantly enhanced the abundance of tetC by 29.81%, while ermB and sul2 decreased by 45.37% and 76.47%, respectively (p < 0.01). After 2-year irrigation, the abundance of tetC, ermB, ermF, dfrA1, and total ARGs significantly increased (p < 0.05) when the irrigation amount increased. The abundances of ARGs after 2-year irrigation were found to be 2.5-34.4 times higher than 1 year. Obviously, the irrigation years intensified the positive correlation between ARGs abundance and irrigation amount. TetC and ermF were the dominant genes resulting in the accumulation of ARGs. TWW irrigation increased the content of organic matter and total nitrogen in the soil, which affected microbial community structure. The changes of the potential host were the determining factors driving the ARGs abundance. Our study demonstrated that continuous TWW irrigation for 2 years led to a substantial accumulation of ARGs in soil.


Asunto(s)
Suelo , Aguas Residuales , Animales , Suelo/química , Ganado , Granjas , Antibacterianos , Riego Agrícola/métodos , Microbiología del Suelo , China
12.
J Antibiot (Tokyo) ; 77(4): 201-205, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38273126

RESUMEN

Assisted by OSMAC strategy, one new p-terphenyl and two new α­pyrone derivates, namely nocarterphenyl I (1) and nocardiopyrone D-E (2-3), were obtained and characterized from the marine sediment-derived actinomycete Nocardiopsis sp. HDN154086. The structures of these compounds were determined on the basis of MS, NMR spectroscopic data and single-crystal X-ray diffraction. Compound 1 with a rare 2,2'-bithiazole structure among natural products showed promising activity against five bacteria with MIC values ranging from 0.8 to 1.6 µM and 3 exhibited notable antibacterial activity against MRSA compared the positive control ciprofloxacin.


Asunto(s)
Actinobacteria , Compuestos de Terfenilo , Actinobacteria/química , Nocardiopsis , Pironas/química , Estructura Molecular , Antibacterianos/química , Compuestos de Terfenilo/química
13.
Artículo en Inglés | MEDLINE | ID: mdl-38041635

RESUMEN

The commercial application of lithium-sulfur (Li-S) batteries has faced obstacles, including challenges related to low sulfur utilization, structural degradation resulting from electrode volume expansion, and migration of polysulfide lithium (LiPSs). Herein, Co1-xS/3D-Ti3C2Tx composites with three-dimensional (3D) multilayered structures are used as separator modification materials for Li-S batteries to solve these problems. The multilevel layered structure of Co1-xS/3D-Ti3C2Tx establishes an efficient electron and Li+ transfer path, alleviates the volume change during the battery charge-discharge process, and enhances the stability of the structure. In addition, the battery assembled with the modified separator shows excellent discharge capacity and cycle stability at 0.5 C and could maintain a high discharge capacity after 500 cycles. This work provides a method for designing highly dispersed metal sulfide nanoparticles on MXenes and extends the application of MXenes-based composites in electrochemical energy storage.

14.
Mar Drugs ; 21(12)2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38132949

RESUMEN

Heterologous biosynthesis has become an effective means to activate fungal silent biosynthetic gene clusters (BGCs) and efficiently utilize fungal genetic resources. Herein, thirteen labdane diterpene derivatives, including five undescribed ones named talarobicins A-E (3-7), were discovered via heterologous expression of a silent BGC (labd) in Aspergillus nidulans. Their structures with absolute configurations were elucidated using extensive MS and NMR spectroscopic methods, as well as electronic circular dichroism (ECD) calculations. These labdanes belong to four skeleton types, and talarobicin B (4) is the first 3,18-dinor-2,3:4,18-diseco-labdane diterpene with the cleavage of the C2-C3 bond in ring A and the decarboxylation at C-3 and C-18. Talarobicin B (4) represents the key intermediate in the biosynthesis of penioxalicin and compound 13. The combinatorial heterologous expression and feeding experiments revealed that the cytochrome P450 enzymes LabdC, LabdE, and LabdF were responsible for catalyzing various chemical reactions, such as oxidation, decarboxylation, and methylation. All of the compounds are noncytotoxic, and compounds 2 and 8 displayed inhibitory effects against methicillin-resistant coagulase-negative staphylococci (MRCNS) and Bacillus cereus.


Asunto(s)
Aspergillus nidulans , Diterpenos , Talaromyces , Talaromyces/metabolismo , Diterpenos/química , Sistema Enzimático del Citocromo P-450 , Espectroscopía de Resonancia Magnética , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Estructura Molecular
15.
Mar Drugs ; 21(9)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37755103

RESUMEN

Coumarins, isocoumarins and their derivatives are polyketides abundant in fungal metabolites. Although they were first discovered over 50 years ago, the biosynthetic process is still not entirely understood. Herein, we report the activation of a silent nonreducing polyketide synthase that encodes a C7-methylated isocoumarin, similanpyrone B (1), in a marine-derived fungus Simplicillium lamellicola HDN13-430 by heterologous expression. Feeding studies revealed the host enzymes can change 1 into its hydroxylated derivatives pestapyrone A (2). Compounds 1 and 2 showed moderate radical scavenging activities with ED50 values of 67.4 µM and 104.2 µM. Our discovery fills the gap in the enzymatic elucidation of naturally occurring C7-methylated isocoumarin derivatives.


Asunto(s)
Hypocreales , Isocumarinas , Sintasas Poliquetidas , Cumarinas/farmacología
16.
Life Sci ; 330: 121998, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37536615

RESUMEN

AIMS: Novel antimycin alkaloid antimycin A2c (AE) was isolated from the culture of a marine derived Streptomyces sp. THS-55. We elucidated its chemical structure by extensive spectra and clarified the specific mechanism in HPV infected-cervical cancer. MATERIALS AND METHODS: Colony formation assay, cell cycle analysis, hoechst 33342 staining assay, et.al were used to detect the inhibitory effect of AE on cervical cancer cells. Meanwhile, flow cytometry, western blotting, immunoprecipitation, RNA interference and molecular docking were used to analyze the mechanism of AE. KEY FINDINGS: AE exhibited potent cytotoxicity in vitro against HPV-transformed cervical cancer HeLa cell line. AE inhibited the proliferation, arrested cell cycle distribution, and triggered caspase dependent apoptosis in HeLa cells. Further studies revealed AE-induced apoptosis is mediated by the degradation of E6/E7 oncoproteins. Molecular mechanic investigation showed that AE degraded the levels of E6/E7 oncoproteins through reactive oxygen (ROS)-mediated ubiquitin-dependent proteasome system activation, and the increased ROS generation was due to the disruption of the mitochondrial function. SIGNIFICANCE: This present work revealed that this novel marine derived antimycin alkaloid could target the mitochondria and subsequently degrade HPV E6/E7 oncoproteins, and have potential application in the design and development of lead compound for cervical cancer cells, as well as the development for tool compounds to dissect E6/E7 functions.


Asunto(s)
Antineoplásicos , Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Streptomyces , Neoplasias del Cuello Uterino , Femenino , Humanos , Células HeLa , Neoplasias del Cuello Uterino/genética , Streptomyces/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Simulación del Acoplamiento Molecular , Proteínas Oncogénicas Virales/genética , Proteínas E7 de Papillomavirus , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Mitocondrias/metabolismo
17.
J Colloid Interface Sci ; 650(Pt A): 480-489, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37421750

RESUMEN

Lithium-sulfur (Li-S) batteries are regarded as highly prospective energy storage devices. However, problems such as low sulfur utilization, poor cycle performance, and insufficient rate capability hinder the commercial development of Li-S batteries. Three-dimensional (3D) structure materials have been applied to modify the separator of Li-S batteries to suppress the diffusion of lithium polysulfides (LiPSs) and inhibit the transmembrane diffusion of Li+. A vanadium sulfide/titanium carbide (VS4/Ti3C2Tx) MXene composite with a 3D conductive network structure has been synthesized in situ by a simple hydrothermal reaction. VS4 is uniformly loaded on the Ti3C2Tx nanosheets through vanadium-carbon(V-C) bonds, which effectively inhibits the self-stacking of Ti3C2Tx. The synergistic action of VS4 and Ti3C2Tx substantially reduces the shuttle of LiPSs, improves interfacial charge transfer, and boosts the kinetics of LiPSs conversion, consequently increasing the rate performance and cycle stability of the battery. The assembled battery has a specific discharge capacity of 657 mAhg-1 after 500 cycles at 1C, with a high capacity retention rate of 71%. The construction of VS4/Ti3C2Tx composite with a 3D conductive network structure provides a feasible strategy for the application of polar semiconductor materials in Li-S batteries. It also provides an effective solution for the design of high-performance Li-S batteries.

18.
Eur J Med Chem ; 258: 115615, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37413878

RESUMEN

Development and design of anti-influenza drugs with novel mechanisms is of great significance to combat the ongoing threat of influenza A virus (IAV). Hemagglutinin (HA) is regarded as a potential target for the therapy of IAV. Our previous research led to the discovery of penindolone (PND), a new diclavatol indole adduct, as an HA targeting leading compound exhibited anti-IAV activity. To enhance the bioactivity and understand the structure-activity relationships (SARs), 65 PND derivatives were designed and synthesized, and the anti-IAV activities as well as the HA targeting effects were systematically investigated in this study. Among them, compound 5g possessed high affinity to HA and was more effective than PND in terms of inhibiting HA-mediated membrane fusion. Compound 5g may act on the trypsin cleavage site of HA to exhibit a strong inhibition on membrane fusion. In addition, oral administration of 5g can significantly reduce the pulmonary virus titer, attenuate the weight loss, and improve the survival of IAV-infected mice, superior to the effects of PND. These findings suggest that the HA inhibitor 5g has potential to be developed into a novel broad-spectrum anti-IAV agent in the future.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Animales , Humanos , Ratones , Glicoproteínas Hemaglutininas del Virus de la Influenza , Hemaglutininas/farmacología , Fusión de Membrana
19.
Nat Prod Res ; : 1-6, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37384587

RESUMEN

A new alkaloid named aspergilalkaloid A (1) with pyridoindole hydroxymethyl piperazine dione structure along with six known compounds 2-7 were isolated from deep-sea derived fungus Aspergillus sp. HDN20-1401. The structure including absolute configuration was elucidated by extensive NMR analyses, HRESIMS, ECD calculation, and theoretical NMR calculation with DP4+ analysis. All isolated compounds were tested for antimicrobial and anticancer activity. Aspergilalkaloid A (1) showed inhibitive activity against Bacillus cereus with MIC value of 12.5 µM and weak activity against MRCNS.

20.
Int Immunopharmacol ; 121: 110471, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37356120

RESUMEN

Penisuloxazin A (PNSA), a new compound from the fungus, is a novel C-terminal Hsp90 inhibitor reported by us before. It has been reported to possess antitumor activity and suppresses metastasis of breast cancer cells. However, the influence of PNSA on T cells is not fully understood. Here, we found that PNSA was much less toxic to lymphocytes than to tumor cells and it had no significant effect on populations of CD3+, CD4+ and CD8+ T lymphocytes. We discovered that PNSA directly enhanced the killing capacities of the CD8+ T and CD3+CD25- to CT26 cells, but not that of CD3+ cells due to the increase of Treg cells. What's more, PNSA pretreated tumor cells increase the sensitivity to CD8+ T cells mainly through the degradation of client protein of Hsp90 and declination of PD-L1 expression. Eventually, PNSA enhanced the killing ability of CD8+ and CD3+ T cells by simultaneously acting on lymphocytes and cancer cells. In vivo experiments, PNSA exhibited inhibition effects in the colon adenocarcinoma with increase of CD8 T cell infiltration in tumor tissues. All these results indicate that the novel Hsp90 C-terminal inhibitor-PNSA can promote lytic T cell immunological function to improve anticancer effect of PNSA, which provides a better foundation for anticancer drug development of PNSA in future.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Humanos , Linfocitos T CD8-positivos , Adenocarcinoma/metabolismo , Neoplasias del Colon/metabolismo , Linfocitos T Reguladores/metabolismo , Proteínas de Choque Térmico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...