Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 87
1.
Article En | MEDLINE | ID: mdl-38749878

OBJECTIVE: To assess the feasibility of utilizing the keystone design perforator island flap (KDPIF) for the repair of small to medium-sized defects in the buccal mucosa and floor of mouth (cT1-2 stage tumor). STUDY DESIGN: We conducted a retrospective analysis of eight patients who underwent KDPIF to address oral defects at the Affiliated Hospital of Qingdao University between June 2021 and September 2022. Patient information, including medical history, defect site, flap size, operative time, hospital stay, complications, and postoperative recovery of oral function, was comprehensively evaluated. RESULTS: Eight patients (6 females and 2 males) underwent reconstruction using KDPIF. The mean operation time was 58.5 minutes (55-63 minutes), with an average length of stay of 3.5 days (3-5 days). None of the 8 cases (100%) exhibited flap splitting necrosis or infection. Moreover, no scar contracture was observed, and oral functions, including the degree of opening, type of opening, tongue mobility, speech function, and swallowing function, were successfully restored. One patient (12.5%) experienced bleeding from the incision on the first postoperative day, but following compression, hemostasis was achieved, and the incision healed well. CONCLUSIONS: KDPIF demonstrates technical feasibility and suitability for repairing small to medium-sized buccal mucosa and floor of mouth defects (cT1-2).

2.
Front Microbiol ; 15: 1372078, 2024.
Article En | MEDLINE | ID: mdl-38605705

Introduction: An unprecedented surge of Omicron infections appeared nationwide in China in December 2022 after the adjustment of the COVID-19 response policy. Here, we report the clinical and genomic characteristics of SARS-CoV-2 infections among children in Shanghai during this outbreak. Methods: A total of 64 children with symptomatic COVID-19 were enrolled. SARS-CoV-2 whole genome sequences were obtained using next-generation sequencing (NGS) technology. Patient demographics and clinical characteristics were compared between variants. Phylogenetic tree, mutation spectrum, and the impact of unique mutations on SARS-CoV-2 proteins were analysed in silico. Results: The genomic monitoring revealed that the emerging BA.5.2.48 and BF.7.14 were the dominant variants. The BA.5.2.48 infections were more frequently observed to experience vomiting/diarrhea and less frequently present cough compared to the BF.7.14 infections among patients without comorbidities in the study. The high-frequency unique non-synonymous mutations were present in BA.5.2.48 (N:Q241K) and BF.7.14 (nsp2:V94L, nsp12:L247F, S:C1243F, ORF7a:H47Y) with respect to their parental lineages. Of these mutations, S:C1243F, nsp12:L247F, and ORF7a:H47Y protein were predicted to have a deleterious effect on the protein function. Besides, nsp2:V94L and nsp12:L247F were predicted to destabilize the proteins. Discussion: Further in vitro to in vivo studies are needed to verify the role of these specific mutations in viral fitness. In addition, continuous genomic monitoring and clinical manifestation assessments of the emerging variants will still be crucial for the effective responses to the ongoing COVID-19 pandemic.

4.
Ecotoxicol Environ Saf ; 274: 116181, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38460406

The emergence of polyvinyl chloride (PVC) microplastics (MPs) as pollutants in agricultural soils is increasingly alarming, presenting significant toxic threats to soil ecosystems. Ajwain (Trachyspermum ammi L.), a plant of significant medicinal and culinary value, is increasingly subjected to environmental stressors that threaten its growth and productivity. This situation is particularly acute given the well-documented toxicity of chromium (Cr), which has been shown to adversely affect plant biomass and escalate risks to the productivity of such economically and therapeutically important species. The present study was conducted to investigate the individual effects of different levels of PVC-MPs (0, 2, and 4 mg L-1) and Cr (0, 150, and 300 mg kg-1) on various aspects of plant growth. Specifically, we examined growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress responses, antioxidant compound activity (both enzymatic and nonenzymatic), gene expression, sugar content, nutritional status, organic acid exudation, and Cr accumulation in different parts of Ajwain (Trachyspermum ammi L.) seedlings, which were also exposed to varying levels of titanium dioxide (TiO2) nanoparticles (NPs) (0, 25, and 50 µg mL-1). Results from the present study showed that the increasing levels of Cr and PVC-MPs in soils significantly decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants. Conversely, increasing levels of Cr and PVC-MPs in the soil increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, and also increased organic acid exudation pattern in the roots of T. ammi seedlings. Interestingly, the application of TiO2-NPs counteracted the toxicity of Cr and PVC-MPs in T. ammi seedlings, leading to greater growth and biomass. This protective effect is facilitated by the NPs' ability to sequester reactive oxygen species, thereby reducing oxidative stress and lowering Cr concentrations in both the roots and shoots of the plants. Our research findings indicated that the application of TiO2-NPs has been shown to enhance the resilience of T. ammi seedlings to Cr and PVC-MPs toxicity, leading to not only improved biomass but also a healthier physiological state of the plants. This was demonstrated by a more balanced exudation of organic acids, which is a critical response mechanism to metal stress.


Ammi , Soil Pollutants , Titanium , Antioxidants/metabolism , Ammi/metabolism , Microplastics/metabolism , Plastics/metabolism , Chromium/analysis , Ecosystem , Oxidative Stress , Soil , Gene Expression , Soil Pollutants/analysis
5.
BMC Biol ; 22(1): 55, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38448908

BACKGROUND: The underrepresentation of human genomic resources from Southern Chinese populations limited their health equality in the precision medicine era and complete understanding of their genetic formation, admixture, and adaptive features. Besides, linguistical and genetic evidence supported the controversial hypothesis of their origin processes. One hotspot case was from the Chinese Guangxi Pinghua Han people (GPH), whose language was significantly similar to Southern Chinese dialects but whose uniparental gene pool was phylogenetically associated with the indigenous Tai-Kadai (TK) people. Here, we analyzed genome-wide SNP data in 619 people from four language families and 56 geographically different populations, in which 261 people from 21 geographically distinct populations were first reported here. RESULTS: We identified significant population stratification among ethnolinguistically diverse Guangxi populations, suggesting their differentiated genetic origin and admixture processes. GPH shared more alleles related to Zhuang than Southern Han Chinese but received more northern ancestry relative to Zhuang. Admixture models and estimates of genetic distances showed that GPH had a close genetic relationship with geographically close TK compared to Northern Han Chinese, supporting their admixture origin hypothesis. Further admixture time and demographic history reconstruction supported GPH was formed via admixture between Northern Han Chinese and Southern TK people. We identified robust signatures associated with lipid metabolisms, such as fatty acid desaturases (FADS) and medically relevant loci associated with Mendelian disorder (GJB2) and complex diseases. We also explored the shared and unique selection signatures of ethnically different but linguistically related Guangxi lineages and found some shared signals related to immune and malaria resistance. CONCLUSIONS: Our genetic analysis illuminated the language-related fine-scale genetic structure and provided robust genetic evidence to support the admixture hypothesis that can explain the pattern of observed genetic diversity and formation of GPH. This work presented one comprehensive analysis focused on the population history and demographical adaptative process, which provided genetic evidence for personal health management and disease risk prediction models from Guangxi people. Further large-scale whole-genome sequencing projects would provide the entire landscape of southern Chinese genomic diversity and their contributions to human health and disease traits.


Acclimatization , Genomics , Humans , China , Alleles , Language
6.
Sci Total Environ ; 921: 171179, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38402992

Mining activities aggravate the ecological degradation and emission of greenhouse gases throughout the world, thereby affecting the global climate and posing a serious threat to the ecological safety. Vegetation restoration is considered to be an effective and sustainable strategy to improve the post-mining soil quality and functions. However, we still have a limited knowledge of the impact of vegetation restoration on carbon sequestration potential in mining areas. In this pursuit, the present study was envisaged to integrate the findings from studies on soil organic carbon (SOC) sequestration in mining areas under vegetation restoration with field monitoring data. The carbon sequestration potential under vegetation restoration in China's mining areas was estimated by using a machine learning model. The results showed that (1) Vegetation restoration exhibited a consistently positive impact on the changes in the SOC reserves. The carbon sequestration potential was the highest in mixed forests, followed by broad-leaved forests, coniferous forests, grassland, shrubland, and farmland; (2) The number of years of vegetation restoration and mean annual precipitation were found to be the important moderating variables affecting the SOC reserves in reclaimed soils in mining areas; (3) There were significant differences in the SOC sequestration potential under different vegetation restoration scenarios in mining areas in China. The SOC sequestration potential reached up to 9.86 million t C a-1, when the soil was restored to the initial state. Based on the meta-analysis, the maximal attainable SOC sequestration potential was found to be 4.26 million t C a-1. The SOC sequestration potential reached the highest level of 12.86 million t C a-1, when the optimal vegetation type in a given climate was restored. The results indicated the importance of vegetation restoration for improving the soil sequestration potential in mining areas. The time lag in carbon sequestration potential for different vegetation types in mining areas was also revealed. Our findings can assist the development of ecological restoration regimens in mining areas to mitigate the global climate change.

7.
Carbohydr Polym ; 328: 121709, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38220343

Chroogomphus rutilus (CR) possesses anti-inflammatory, antioxidant, and hypoglycemic properties. However, studies are yet to evaluate the anti-osteoporotic activity of the fungi and its polysaccharides. Therefore, this study is aimed at characterizing and evaluating the anti-osteoporotic effects of a novel polysaccharide from CR. The neutral polysaccharide CRP2 extracted and purified from the fruiting body of CR had a molecular weight of 20.41 kDa. Monosaccharide composition analysis revealed that CRP2 is composed of galactose, glucose, fucose, and mannose. The backbone of CRP2 primarily consisted of →6)-α-D-Galp-(1 â†’ residues, with specific site substitutions speculated at partial positions, such as O-CH3 substitution at H-3 position, or a branch site located at C-2, including α-L-Fucp-(1 â†’ 6)-ß-D-Glcp-(1 â†’ and α-D-Manp-(1→. CRP2 treatment increased trabecular bone density, restored a network-shaped structure, and upregulated the expression of osteoblast differentiation markers, including runt-related transcription factor 2, osterix, osteocalcin, and osteopontin in the femoral tissue of mice with osteoporosis (OP). Additionally, CRP2 treatment suppressed the expression of tumor necrosis factor-α and interleukin-1ß in the femoral tissue of mice with OP. Mechanistically, CRP2 exerted anti-OP effect by inhibiting inflammation and promoting osteogenesis through the transforming growth factor ß-1/Smad pathway. Conclusively, these findings augment our understanding of the potential role of CRP2 in OP treatment.


Basidiomycota , Osteogenesis , Animals , Mice , Polysaccharides/pharmacology , Polysaccharides/chemistry , Monosaccharides/analysis
8.
Sci Total Environ ; 914: 169980, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38215837

Soil contamination with toxic heavy metals [such as lead (Pb)] is becoming a serious global problem due to the rapid development of the social economy. Organic chelating agents such as maleic acid (MA) and tartaric acid (TA) are more efficient, environmentally friendly, and biodegradable compared to inorganic chelating agents and they enhance the solubility, absorption, and stability of metals. To investigate this, we conducted a hydroponic experiment to assess the impact of MA (0.25 mM) and TA (1 mM) on enhancing the phytoremediation of Pb under its toxic concentration of 100 µM, using the oil seed crop canola (Brassica napus L.). Results from the present study showed that the Pb toxicity significantly (P < 0.05) decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes and nutritional contents from the roots and shoots of the plants. In contrast, toxic concentration of Pb significantly (P < 0.05) increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, increased enzymatic and non-enzymatic antixoidants and their specific gene expression and also increased organic acid exudation patter in the roots of B. napus. In addition, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that Pb toxicity significantly affected double membranous organelles while Fourier-transform infrared (FTIR) spectroscopy showed an nveiled distinct peak variations in Pb-treated plants, when compared to control. Additionally, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that Pb toxicity significantly affected double-membrane organelles, while Fourier-transform infrared (FTIR) spectroscopy unveiled distinct peak variations in Pb-treated plants compared to the control. The negative impact of Pb toxicity can overcome the application of MA and TA, which ultimately increased plant growth and biomass by capturing the reactive oxygen species, and decreased oxidative stress in B. napus. With the application of MA and TA, the values of the bioaccumulation factor (BAF) and translocation factor (TF) exceeded 1, indicating that the use of MA and TA enhances the phytoremediation potential of B. napus under Pb stress conditions. This finding could be beneficial for field environment studies, especially when explored through in-depth genetic and molecular analysis.


Brassica napus , Soil Pollutants , Lead/analysis , Brassica napus/metabolism , Soil Pollutants/analysis , Biodegradation, Environmental , Chelating Agents/metabolism , Plant Roots/metabolism , Soil
9.
Int J Biol Macromol ; 258(Pt 1): 128819, 2024 Feb.
Article En | MEDLINE | ID: mdl-38104691

The water-soluble neutral polysaccharide BEP2, with a molecular weight of 26.65 kDa, was isolated from the aqueous extract obtained from the fruiting bodies of Boletus aereus Bull. BEP2 primarily comprises Gal, with specific site substitutions speculated at partial positions, such as the substitution of -OCH3 at position H-3 or the branch at position C-2 including α-L-Fucp-(1→, α-D-Manp-(1 â†’ and α-D-Manp-(1 â†’ 3)-α-L-Fucp-(1 â†’ 6)-ß-D-Glcp-(1→. Treatment with BEP2 significantly enhanced learning, memory, and cognitive function, while concurrently reducing the accumulation of ß-amyloid and suppressing neuroinflammation within the brains of APP/PS1 mice. Based on the results of biochemical detection, gut microbiota analysis, and metabolomic profiling, we found that BEP2 significantly upregulated the abundance of two bacterial families while downregulation that of seven bacterial families within the intestinal ecosystem. Notably, the abundance of the S24-7 family was significantly increased. Treatment with BEP2 upregulated five metabolites, while downregulating three metabolites, including norepinephrine. Additionally, BEP2 decreased the levels of interleukin (IL)-1ß and IL-6, regulated the activities of microglial cells and astrocytes and increased the levels of the chemokine fractalkine (CX3CL1) and its receptor on microglia (CX3CR1), as well as that of transforming growth factor (TGF)-ß1. These findings confirmed the suppressive effects of BEP2 on neuroinflammation.


Alzheimer Disease , Basidiomycota , Humans , Mice , Animals , Alzheimer Disease/metabolism , Mice, Transgenic , Neuroinflammatory Diseases , Ecosystem , Amyloid beta-Peptides/metabolism , Disease Models, Animal
10.
Nutrients ; 15(23)2023 Nov 24.
Article En | MEDLINE | ID: mdl-38068764

Osteoporosis (OP) leads to the acceleration of tooth movement and aggravation of periodontal bone loss during orthodontic treatment. Chroogomphus rutilus (CR) is abundant in nutrients and demonstrates remarkable antioxidant and anti-inflammatory properties. In the present study, the components of CR, including 35.00% total sugar, 0.69% reducing sugar, 14.40% crude protein, 7.30% total ash, 6.10% crude fat, 0.51% total flavonoids, 1.94% total triterpenoids, 0.32% total sterol, 1.30% total saponins, 1.69% total alkaloids, and 1.02% total phenol, were first systematically examined, followed by an investigation into its regulatory effects on bone metabolism in order to mitigate bone loss during orthodontic tooth movement in osteoporotic rats. The results of the imaging tests revealed that CR treatment reduced periodontal bone loss and normalized tooth movement in the OP. In conjunction with analyses of intestinal flora and metabolomics, CR enhances the prevalence of anti-inflammatory genera while reducing the production of inflammatory metabolites. Meanwhile, CR reduced the levels of periodontal inflammatory factors, including TNF-α, IL-1ß, and IL-6, by activating Wnt/ß-catenin signaling, and promoted periodontal bone formation. These findings imply that CR is a potent supplementary therapy for controlling periodontal bone remodeling in patients with OP undergoing orthodontic treatment.


Alveolar Bone Loss , Osteoporosis , Humans , Rats , Animals , Alveolar Bone Loss/prevention & control , Tooth Movement Techniques/adverse effects , Tooth Movement Techniques/methods , Anti-Inflammatory Agents , Osteoporosis/prevention & control , Sugars
11.
J Multidiscip Healthc ; 16: 2773-2779, 2023.
Article En | MEDLINE | ID: mdl-37753344

Objective: To investigate the efficacy of ultrasound-guided radiofrequency ablation and its effect on thyroid function in patients with cystic-solid thyroid nodules. Methods: We enrolled 90 patients with cystic-solid thyroid nodules and randomly assigned to either a control group (n = 37) or an observation group (n = 53). Patients in the observation group underwent ultrasound-guided radiofrequency ablation, while those in the control group were treated with ultrasound-guided lauromacrogol. Thyroid function was monitored, and complications were recorded for both groups, while nodule reduction rates were compared across a range of volumes and time periods. Results: One month after surgery, the observation group had a larger volume of nodules than the control group, while at 12 months, the volume of nodules in the observation group was smaller. (P < 0.05). Thyroid-stimulating hormone (TSH), free thyroxine 4 (FT4), and free triiodothyronine (FT3) levels were all within normal ranges after treatment in both groups and showed no significant differences from pre-treatment levels. (P > 0.05). There was no statistically significant difference between the total incidence of adverse reactions in the control group (8.11%) and the observation group (5.66%) (P > 0.05). Conclusion: With a low incidence of postoperative adverse reactions, the ultrasound-guided radiofrequency ablation protocol in the clinical treatment of patients with cystic-solid thyroid nodules can effectively reduce the volume of solid thyroid nodules without affecting the thyroid function of patients and can achieve more ideal treatment effectiveness, and is deserving of promotion.

12.
Nutrients ; 15(16)2023 Aug 10.
Article En | MEDLINE | ID: mdl-37630721

Alcoholic liver disease (ALD) can be induced by excessive alcohol consumption, and has a worldwide age-standardized incidence rate (ASIR) of approximately 5.243%. Inonotus hispidus (Bull.) P. Karst. (IH) is a mushroom with pharmacological effects. In ALD mice, the hepatoprotective effects of IH were investigated. IH strongly ameliorated alcohol-induced pathological changes in the liver, including liver structures and its function-related indices. Intestinal microbiota and serum metabolomics analysis showed that IH altered the associated anti-inflammatory microbiota and metabolites. According to results obtained from Western blot, immunohistochemistry (IHC), and enzyme-linked immunosorbent assay (ELISA), IH downregulated the levels of pro-inflammation factors interleukin (IL)-1ß, IL-6 and tumor necrosis factor-α (TNF-α), enhanced the expressions of peroxisome proliferator-activated receptor alpha (PPARα) and 15-hydroxprostaglandin dehydrogenase (15-PGDH), and inhibited the phosphorylated activation of Janus kinase (JAK) 1 and signal transducer and activator of transcription (STAT) 3, confirming the hepatoprotection of IH against alcohol damage via anti-inflammation. This study provides the experimental evidence for the hepatoprotective effects of IH in chronic ALD.


Chemical and Drug Induced Liver Injury, Chronic , Liver Diseases, Alcoholic , Animals , Mice , Ethanol/adverse effects , Inonotus , Liver Diseases, Alcoholic/prevention & control
13.
Huan Jing Ke Xue ; 44(6): 3386-3395, 2023 Jun 08.
Article Zh | MEDLINE | ID: mdl-37309956

Vegetation restoration can effectively improve the ecological environment of mining areas, enhance the ecological service function, and promote the carbon sequestration and sink increase in the ecosystem. The soil carbon cycle plays an important role in the biogeochemical cycle. The abundance of functional genes can predict the material cycling potential and metabolic characteristics of soil microorganisms. Previous studies on functional microorganisms have mainly focused on large ecosystems such as farmland, forest, and wetland, but relatively little attention has been paid to complex ecosystems with great anthropogenic interference and special functions, such as mines. Clarifying the succession and driving mechanism of functional microorganisms in reclaimed soil under the guidance of vegetation restoration is helpful to fully explore how functional microorganisms change with the change in abiotic and biotic conditions. Therefore, 25 topsoil samples were collected from grassland (GL), brushland (BL), coniferous forests (CF), broadleaf forests (BF), and mixed coniferous and broadleaf forests (MF) in the reclamation area of the Heidaigou open pit waste dump on the Loess Plateau. The absolute abundance of soil carbon cycle functional genes was determined using real-time fluorescence quantitative PCR to explore the effect of vegetation restoration on the abundance of carbon cycle-related functional genes in soil and its internal mechanism. The results showed that:① the effects of different vegetation restoration types on the chemical properties of reclaimed soil and the abundance of functional genes related to the carbon cycle were significantly different (P<0.05). GL and BL showed significantly better accumulation of soil organic carbon, total nitrogen, and nitrate nitrogen (P<0.05) than that in CF. ② The gene abundance of rbcL, acsA, and mct was the highest among all carbon fixation genes. The abundance of functional genes related to carbon cycle in BF soil was higher than that in other types, which was closely related to the high activity of ammonium nitrogen and BG enzymes and the low activity of readily oxidized organic carbon and urease in BF soil. The functional gene abundance of carbon degradation and methane metabolism was positively correlated with ammonium nitrogen and BG enzyme activity and negatively correlated with organic carbon, total nitrogen, readily oxidized organic carbon, nitrate nitrogen, and urease activity (P<0.05). ③ Different vegetation types could directly affect soil BG enzyme activity or affect soil nitrate nitrogen content, thus indirectly affecting BG enzyme activity, in turn manipulating the abundance of functional genes related to the carbon cycle. This study is helpful to understand the effects of different vegetation restoration types on the functional genes related to the carbon cycle in the soil of mining areas on the Loess Plateau and provides a scientific basis for ecological restoration and ecological carbon sequestration and sink enhancement in mining areas.


Ecosystem , Soil , Carbon , Nitrates , Urease , Carbon Cycle , Forests , Nitrogen
14.
Chemosphere ; 336: 139234, 2023 Sep.
Article En | MEDLINE | ID: mdl-37327827

Bioremediation has tremendous potential to mitigate the serious threats posed by polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs). In the present study, nine bacterial-fungal consortia were progressively acclimated under different culture conditions. Among them, a microbial consortium 1, originating from activated sludge and copper mine sludge microorganisms, was developed through the acclimation of a multi-substrate intermediate (catechol)-target contaminant (Cd2+, phenanthrene (PHE)). Consortium 1 exhibited the best PHE degradation, with an efficiency of 95.6% after 7 d of inoculation, and its tolerance concentration for Cd2+ was up to 1800 mg/L within 48 h. Bacteria Pandoraea and Burkholderia-Caballeronia-Paraburkholderia, as well as fungi Ascomycota and Basidiomycota predominated in the consortium 1. Furthermore, a biochar-loaded consortium was constructed to better cope with the co-contamination behavior, which exhibited excellent adaptation to Cd2+ ranging of 50-200 mg/L. Immobilized consortium efficiently degraded 92.02-97.77% of 50 mg/L PHE within 7 d while removing 93.67-99.04% of Cd2+. In remediation of co-pollution, immobilization technology improved the bioavailability of PHE and dehydrogenase activity of the consortium to enhance PHE degradation, and the phthalic acid pathway was the main metabolic pathway. As for Cd2+ removal, oxygen-containing functional groups (-OH, C=O, and C-O) of biochar or microbial cell walls and EPS components, fulvic acid and aromatic proteins, participated through chemical complexation and precipitation. Furthermore, immobilization led to more active consortium metabolic activity during the reaction, and the community structure developed in a more favorable direction. The dominant species were Proteobacteria, Bacteroidota, and Fusarium, and the predictive expression of functional genes corresponding to key enzymes was elevated. This study provides a basis for combining biochar and acclimated bacterial-fungal consortia for co-contaminated site remediation.


Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Cadmium/metabolism , Sewage , Soil Pollutants/analysis , Phenanthrenes/metabolism , Polycyclic Aromatic Hydrocarbons/analysis , Bacteria/genetics , Bacteria/metabolism , Biodegradation, Environmental , Acclimatization , Soil/chemistry
15.
Environ Pollut ; 333: 122010, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37302784

In the current industrial scenario, chromium (Cr) as a metal is of great importance but poses a major threat to the ecosystem because of its toxicity, but fewer studies have been conducted on its effects and alleviation strategies by using nanoparticles (NPs) and plant growth promoting rhizobacteria (PGPR). Taking into consideration the positive effects of silver⎯nanoparticles (Ag⎯NPs) and (HAS31) rhizobacteria in reducing Cr toxicity in plants, the present study was conducted. A pot experiment was conducted to determine the effects of single and/or combined application of different levels [0 (no Ag⎯NPS), 15 and 30 mM] of Ag⎯NPs and HAS31 [0 (no HAS31), 50 g and 100 g] on Cr accumulation, morpho-physiological and antioxidative defense attributes of barley (Hordeum vulgare L.) exposed to severe Cr stress [0 (without Cr stress), 50 and 100 µM)]. Results from the present study showed that the increasing levels of Cr in the soil significantly (P < 0.05) decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants. In contrast, increasing levels of Cr in the soil significantly (P < 0.05) increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, and also increased organic acid exudation patter in the roots of H. vulgare. Although, the activities of enzymatic antioxidants and the response of their gene expressions in the roots and shoots of the plants and non-enzymatic such as phenolic, flavonoid, ascorbic acid, and anthocyanin contents were increased by increasing the Cr concentration in the soil. The negative impacts of Cr injury were reduced by the application of PGPR (HAS31) and Ag⎯NPs, which increased plant growth and biomass, improved photosynthetic apparatus, antioxidant enzymes, and mineral uptake, as well as diminished the exudation of organic acids and oxidative stress indicators in roots of H. vulgare by decreasing Cr toxicity. Research findings, therefore, suggest that the application of PGPR (HAS31) and Ag⎯NPs can ameliorate Cr toxicity in H. vulgare, resulting in improved plant growth and composition under metal stress, as depicted by balanced exudation of organic acids.


Hordeum , Soil Pollutants , Chromium/analysis , Hordeum/metabolism , Ecosystem , Antioxidants/metabolism , Oxidative Stress , Soil , Soil Pollutants/analysis , Plant Roots/metabolism
16.
Arch Med Sci ; 19(3): 626-632, 2023.
Article En | MEDLINE | ID: mdl-37313191

Introduction: Translocase of the inner mitochondrial membrane 50 (TIMM50) is universally considered to play a key role in several malignancies. However, its role in predicting colorectal cancer (CRC) patient prognosis remains unclear. Material and methods: A total of 192 CRC patients (123 men and 69 women) who underwent radical resection participated in this study. The patients were followed up every 3 months after surgery for 5 years. TIMM50 expression in tumour tissues was measured by quantitative real-time PCR, Western blotting and immunohistochemistry. TIMM50 expression was studied to assess correlations with clinicopathological factors and survival time. Results: TIMM50 expression increased significantly in CRC tumour tissues. Moreover, high TIMM50 expression was related to pathologic stage (p = 0.043), N stage (p = 0.048) and distant metastasis (p = 0.015), but TIMM50 expression was not related to other clinical factors. A Kaplan-Meier survival analysis indicated that patients with low TIMM50 expression had a longer overall survival than those with high TIMM50 expression (p = 0.002). Furthermore, distant metastasis and high TIMM50 expression were confirmed as independent prognostic factors for the overall survival of CRC patients in a multivariate analysis (p = 0.003). Conclusions: TIMM50 may be a key factor for monitoring CRC and a new prognosis indicator for CRC patients.

17.
Front Nutr ; 10: 1089972, 2023.
Article En | MEDLINE | ID: mdl-37125047

Background: Organism can lead to excessive nutrient consumption in the infected state and increase nutritional risk, which is detrimental to the control of the infection and can further aggravate the disease. Objectives: To investigate the impact of nutritional risk and the NRS2002 score on disease progression and prognosis in patients with COVID-19. Methods: This was a retrospective cohort study including 1,228 COVID-19 patients, who were divided into a with-nutritional risk group (patients with NRS2002 score ≥ 3) and a without-nutritional risk group (patients with NRS2002 score < 3) according to the NRS2002 score at admission. The differences in clinical and outcome data between the two groups were compared, and the relationship between the NRS2002 score and the disease progression and prognosis of COVID-19 patients was assessed. Results: Of 1,228 COVID-19 patients, including 44 critical illness patients and 1,184 non-critical illness patients, the rate of harboring nutritional risk was 7.90%. Compared with those in the without-nutritional risk group, patients in the with-nutritional risk group had a significantly longer coronavirus negative conversion time, significantly lower serum albumin (ALB), total serum protein (TP) and hemoglobin (HGB) at admission, discharge or 2 weeks, a significantly greater proportion with 3 or more comorbidities, and a significantly higher rate of critical illness and mortality (all p < 0.001). Multiple regression analysis showed that nutritional risk, NRS2002 score and ALB at admission were risk factors for disease severity. In addition, nutritional risk, NRS2002 score and TP at admission were risk factors for prognosis. The NRS2002 score showed the best utility for predicting critical illness and death in COVID-19 patients. Conclusion: Nutritional risk and a high NRS2002 score are closely related to disease progression and poor prognosis in COVID-19 patients. For patients with NRS2002 score > 0.5, early intervention of malnutrition is needed to reduce the occurrence of critical disease. Additionally, for patients with NRS2002 score > 5.5, continuous nutritional support therapy is needs to reduce mortality and improve prognosis.Clinical Trial registration: [https://www.chictr.org.cn/historyversionpub.aspx?regno=ChiCTR2000034563], identifier [Chinese Clinical Trial Register ChiCTR2000034563].

18.
J Hazard Mater ; 452: 131264, 2023 Jun 15.
Article En | MEDLINE | ID: mdl-36989789

The electroplating industry site is an important reservoir of per- and poly-fluoroalkyl substances (PFASs) and heavy metals. In this work, a novel electrokinetic in-situ chemical oxidation system was established to restore an actual soil co-contaminated with high concentrations of heavy metals (Cr, Cu, Zn and Ni) and PFASs. Potassium persulfate (PS, K2S2O8) and industrial waste steel slag were used as the oxidant and activator, respectively. The steel slag was evenly added in the soil, while PS was dosed in the cathode chamber. Citric acid fermentation broth produced by Aspergillus niger was added in the anode chamber to act as the metal chelator. A periodic alternating magnetic field was employed to enhance the catalytic performance of steel slag for PS. After 15-day treatment, 86.7% of PFASs and 87.2% of heavy metals were removed without PFASs accumulation in the electrolyte, with a defluorination percentage of 79.2%. The remediated soil had no phytotoxicity for wheat seed growth based on 7-day cultivation results. The quality of remediated soil could reach the national Class II criteria for residential use. Electron paramagnetic resonance spectroscopy analysis demonstrated that SO4•- and •OH were the major oxidative radicals responsible for PFASs degradation. Adding steel slag in the soil performed better than that in the cathode chamber based on pollutant removal and alleviating soil acidification. Magnetic induction could enhance PS activation by promote the corrosion of steel slag and thermal activation, thus increasing electrical current and electroosmotic flow, enhancing the transport of citric acid and PS, significantly improving the removal efficiency of heavy metals and PFASs.

19.
Influenza Other Respir Viruses ; 17(2): e13097, 2023 02.
Article En | MEDLINE | ID: mdl-36843225

OBJECTIVES: We used a case-ascertained study to determine the features of household transmission of SARS-CoV-2 Omicron variant in Shanghai, China. METHODS: In April 2022, we carried out a household transmission study from 309 households of 335 SARS-CoV-2 pediatric cases referred to a designated tertiary Children's Hospital. The detailed information can be collected from the 297 households for estimating the transmission parameters. The 236 households were qualified for estimating the secondary infection attack rates (SARI ) and secondary clinical attack rates (SARC ) among adult household contacts, characterizing the transmission heterogeneities in infectivity and susceptibility, and assessing the vaccine effectiveness. RESULTS: We estimated the mean incubation period and serial interval of Omicron variant to be 4.6 ± 2.1 and 3.9 ± 3.7 days, respectively, with 57.2% of the transmission events occurring at the presymptomatic phase. The overall SARI and SARC among adult household contacts were 77.11% (95% confidence interval [CI]: 73.58%-80.63%) and 67.03% (63.09%-70.98%). We found higher household susceptibility in females. Infectivity was not significantly different between children and adults and symptomatic and asymptomatic cases. Two-dose and booster-dose of inactivated COVID-19 vaccination were 14.8% (5.8%-22.9%) and 18.9% (9.0%-27.7%) effective against Omicron infection and 21.5% (10.4%-31.2%) and 24.3% (12.3%-34.7%) effective against the symptomatic disease. CONCLUSIONS: We found high household transmission during the Omicron wave in Shanghai due to presymptomatic and asymptomatic transmission despite implementation of strict interventions, indicating the importance of early detection and timely isolation of SARS-CoV-2 infections. Marginal effectiveness of inactivated vaccines against Omicron infection poses a great challenge for outbreak containment.


COVID-19 , SARS-CoV-2 , Adult , Female , Humans , Child , COVID-19/epidemiology , COVID-19/prevention & control , China/epidemiology , COVID-19 Vaccines
20.
Food Nutr Res ; 672023.
Article En | MEDLINE | ID: mdl-36794010

Background: Prostate cancer is the second leading cause of cancer-related death among males in America. The patients' survival time is significantly reduced after prostate cancer develops into castration-resistant prostate cancer (CRPC). It has been reported that AKR1C3 is involved in this progression, and that its abnormal expression is directly correlated with the degree of CRPC malignancy. Genistein is one of the active components of soy isoflavones, and many studies have suggested that it has a better inhibitory effect on CRPC. Objective: This study aimed to investigate the antitumor effect of genistein on CRPC and the potential mechanism of action. Design: A xenograft tumor mouse model established with 22RV1 cells was divided into the experimental group and the control group, and the former was given 100 mg/kg.bw/day of genistein, with 22RV1, VCaP, and RWPE-1 cells cultured in a hormone-free serum environment and treated with different concentrations of genistein (0, 12.5, 25, 50, and 100 µmol/L) for 48 h. Molecular docking was used to elucidate the molecular interactions between genistein and AKR1C3. Results: Genistein inhibits CRPC cell proliferation and in vivo tumorigenesis. The western blot analysis confirmed that the genistein significantly inhibited prostate-specific antigen production in a dose-dependent manner. In further results, AKR1C3 expression was decreased in both the xenograft tumor tissues and the CRPC cell lines following genistein gavage feeding compared to the control group, with the reduction becoming more obvious as the concentration of genistein was increased. When the genistein was combined with AKR1C3 small interfering ribonucleic acid and an AKR1C3 inhibitor (ASP-9521), the inhibitory effect on the AKR1C3 was more pronounced. In addition, the molecular docking results suggested that the genistein had a strong affinity with the AKR1C3, and that it could be a promising AKR1C3 inhibitor. Conclusion: Genistein inhibits the progression of CRPC via the suppression of AKR1C3.

...