Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Mol Cell Probes ; 73: 101949, 2024 Feb.
Article En | MEDLINE | ID: mdl-38215889

BACKGROUND: There is increasing evidence that platelet-derived extracellular vesicles (PEVs) may be involved in the mechanisms of inflammatory storm and organ damage in sepsis. However, there are no available studies on PEVs and renal injury in patients with urosepsis. METHODS: We analyzed the concentration and ratio of PEVs in plasma by flow cytometry and measured plasma IL-1ß/IL-6/TNF-α/NGAL levels by ELISA. Correlation analysis was also used to examine the concentration of PEVs in relation to levels of inflammatory factors and indicators of kidney damage, as well as the severity of the disease. Finally, the receiver operating characteristic curves were produced for PEVs concentrations as a diagnosis of S-AKI/AKI. RESULTS: We found significantly higher levels of IL-1ß/IL-6/TNF-α/NGAL in patients with urogenital sepsis. Furthermore, the concentrations of PEVs in plasma were significantly elevated in patients with urosepsis, especially in patients with Gram-negative bacterial infections, which were significantly and positively correlated with IL-1ß/IL-6/TNF-α/NGAL levels. The area under the curve for PEVs diagnosing S-AKI and AKI was 0.746 [0.484, 1.000] and 0.943 [0.874, 1.000] respectively. CONCLUSION: Overall, the present study suggested that PEVs may mediate the release of inflammatory mediators in patients with urosepsis and participate in the mechanism of acute kidney injury, as well as having potential as diagnostic indicators of S-AKI and AKI and as early warning indicators of the severity of patients with urosepsis.


Acute Kidney Injury , Extracellular Vesicles , Sepsis , Humans , Lipocalin-2 , Tumor Necrosis Factor-alpha , Interleukin-6 , Sepsis/complications , Acute Kidney Injury/complications , Acute Kidney Injury/diagnosis , Kidney , Biomarkers
2.
Int J Biol Sci ; 19(16): 5055-5073, 2023.
Article En | MEDLINE | ID: mdl-37928258

Circulating plasma extracellular vesicles (EVs) mostly originate from platelets and may promote organ dysfunction in sepsis. However, the role of platelet-derived EVs in sepsis-induced acute kidney injury (AKI) remains poorly understood. The present study extracted EVs from the supernatant of human platelets treated with phosphate buffer saline (PBS) or lipopolysaccharide (LPS). Then, we subjected PBS-EVs or LPS-EVs to cecal ligation and puncture (CLP) mice in vivo or LPS-stimulated renal tubular epithelial cells (RTECs) in vitro. Our results indicated that LPS-EVs aggravate septic AKI via promoting apoptosis, inflammation and oxidative stress. Further, ADP-ribosylation factor 6 (ARF6) was identified as a differential protein between PBS-EVs and LPS-EVs by quantitative proteomics analysis. Mechanistically, ARF6 activated ERK/Smad3/p53 signaling to exacerbate sepsis-induced AKI. LPS upregulated ARF6 in RTECs was dependent on TLR4/MyD88 pathway. Both genetically and pharmacologically inhibition of ARF6 attenuated septic AKI. Moreover, platelets were activated by TLR4 and its downstream mediator IKK controlled platelet secretion during sepsis. Inhibition of platelet secretion alleviated septic AKI. Collectively, our study demonstrated that platelet-derived EVs may be a therapeutic target in septic AKI.


Acute Kidney Injury , Extracellular Vesicles , Sepsis , Mice , Humans , Animals , Lipopolysaccharides/toxicity , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , ADP-Ribosylation Factor 6 , Acute Kidney Injury/chemically induced , Extracellular Vesicles/metabolism , Sepsis/metabolism
3.
Tissue Cell ; 82: 102066, 2023 Jun.
Article En | MEDLINE | ID: mdl-36924675

Extracellular vesicles (EVs) are vesicular bodies with a double-layered membrane structure that are detached from the cell membrane or secreted by the cells. EVs secreted by platelets account for the main part in the blood circulation, which account for about 30% or even more. Many types of cells are regulated by PEVs, including endothelial cells, leukocytes, smooth muscle cells, etc. Nevertheless, despite the growing interest in the study of extracellular vesicles, there are still only a few studies on the role of PEVs. Therefore, this overview mainly focuses on one method of isolation and the functions of PEVs in tissues found so far, including promoting tissue repair and mediating tissue damage, which can be used for researchers to continue to explore the role of PEVs in other fields.


Blood Platelets , Extracellular Vesicles , Endothelial Cells , Extracellular Vesicles/metabolism , Cell Membrane
4.
Front Oncol ; 12: 1066288, 2022.
Article En | MEDLINE | ID: mdl-36620603

Renal cancer is one of the most extensively studied human tumors today, with clear cell renal cell carcinoma accounting for approximately 80% of all cases. Despite recent advances in research on clear cell renal cell carcinoma, advanced distant metastasis of the disease, delay in diagnosis, as well as drug resistance remain major problems. In recent years, as an important mediator of material and information exchange between cells in the tumor microenvironment, exosomes have attracted widespread attention for their role in tumor development. It has been reported that tumor-derived exosomes may act as regulators and have an important effect on the metastasis, drug resistance formation, and providing targets for early diagnosis of clear cell renal cell carcinoma. Therefore, the extensive study of tumour-derived exosomes will provide a meaningful reference for the development of the diagnostic and therapeutic field of clear cell renal cell carcinoma. This article reviews the biological role and research progress of tumor-derived exosomes in different aspects of premetastatic niche formation, tumor angiogenesis, and epithelial-mesenchymal transition during the progression of clear cell renal cell carcinoma. In addition, the role of tumor-derived exosomes in the development of drug resistance in clear cell renal cell carcinoma is also addressed in this review. Furthermore, recent studies have found that cargoes of exosomes in serum and urine, for example, a series of miRNAs, have the potential to be biological markers of clear cell renal cell carcinoma and provide meaningful targets for early diagnosis and monitoring of tumors, which is also covered in this article.

...